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CHAPTER I

INTROD UCTION

1.1 Overview of the Multiple Access Problem

We consider the situation where a number of geographically distributed, indepen-

dent users wish to communicate with each other, or with a central station, by transmitting

messages over a single channel.

The problem then is the design of an algorithm, that is a set of rules which deter-

mine the time instants when a user can transmit his messages.

This problem is referred to as the Multiple Access Problem, and the algorithm

employed is called a Multiple Access Algorithm (MAA). Typical examples of multi -

user communication systems are the following [Il:

(1) Geosynchronous Satellite Systems, where many ground stations transmit to a

common satellite receiver, with the received messages being relayed to the ground sta-

tions.

(2) Packet Radio Networks. Here a message transmitted by a radio transmitter

may be received over a wide area by any number of receivers. This is referred to as the

broadcast capability. Thus a ground packet radio channel provides a completely con-

nected network topology for a large number of users within range of each other.

It is assumed that at most one message can be successfully transmitted at a time



2

simultaneously over the common channel we say that a collision occurred, then the

received signal is the sum of attenuated transmitted signals, perhaps corrupted by distor-

tion and noise. The information contained in the original messages is assumed lost, thus

each message involved in a collision must be retransmitted at some later time, with

further retransmissions possible until the message is successfully transmitted.

The MAA may be centralized (when a central controller dictates the action of each

user), distributed (when each user acts according to prespecified rules without the inter-

vention of a central controller), or a combination of both.

The performance of a MAA depends on the statistical nature of the message gen-

erating process. The Frequency Division Multiple Access (FDMA) , and Time Division

Multiple Access (TDMA) algorithms are the first designed to deal with the problem.

They are both Collision - Free algorithms.

In the FDMA algorithm, the available bandwidth is divided in bands, and each band

is dedicated to a user. In the TDMA algorithm, the time is divided in frames, each frame

is subdivided into slots, and each user is allowed to transmit only once per frame, and

only within the slot dedicated to him. When the users transmit messages continuously,

both the FDMA and the TDMA are very efficient, permitting 100 % utilization of the

channel. However, if the number of users assigned channels is large and possibly time

varying, and if each user transmits bursts of data infrequently, both the above algorithms

induce unnecessarily long delays. Consider for example, the TDMA algorithm and,

assume that there are M (M>>I), users in the network. A message generated by some

user will have to wait an average of M/2 time slots for its transmission, even if no other

user has messages for transmission.
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Measurements conducted on time - sharing systems indicate that both computer and

terminal data streams are bursty, [2]. Depending on channel speed the ratio between the

peak and the average data rates may be as high as 2000 to 1, [3]. From the above discus-

sion it becomes clear that, if the number of users is large, and if the users generate bursts

of messages infrequently, different channel sharing techniques are needed.

The Random Access Algorithms (RAAs), are designed exactly for this purpose.

The main difference between a RAA and a perfectly scheduled MAA ( e.g TDMA, or

FDMA) is that the former allows simultaneous transmission attempts by different users

in the same frequency band. Therefore, collisions are possible. Our objective then is to

design Collision Resolution Algorithms (CRAs), which resolve the resulting collisions

and maintain stable system operation and low delays (time that elapses from the instant

when a message is generated until this message is successfully transmitted). Due to the

fact that a portion of the channel capacity is used for the resolution of collisions, the

channel utilization is in general less than 100 %. However, the message delays at low

traffic rates are generally low, and the channel utilization depends on the total traffic rate,

and not on the number of users.

Only slotted, synchronous Random Access Communication Systems will be con-

sidered. In the sequel we list the modeling assumptions and briefly discuss their implica-

tions.

(1) Slotted, Synchronous Systems. Messages are divided into constant size pack-

ets, and each packet requires one time slot for transmission. All users are synchronized to

the beginning of the slot intervals. Packet transmission may start only at the beginning of

some slot.
I
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(2) Poisson Arrivals. It is assumed that the cumulative packet generating process is

a Poisson random variable, independent from slot to slot. The Throughput of the RAA is

then defined as the supremum of all Poisson rates X, such that, with probability one,

every packet is successfully transmitted with finite delay.

(3) Collision and Perfect Reception. It is assumed that if two or more users

attempt to transmit their packets in a given time slot, then a collision occurs and all the

information contained in the transmitted packets is destroyed, thus retransmission is then

necessary. If just one user sends a packet in a given time slot, then the packet is success-

fully transmitted.

(4) Immediate Feedback Information. At the end of each slot, each user or

perhaps a subset of the users, obtain feedback information about the transmission activity

in that slot. This feedback information is not necessarily error-free,

(5) Infinite Number of Users. The system has an inf'nite number of users and each

newly arriving packet arrives at a new user. This assumption leads to a worst case model.

The design of algorithms under this assumption is of interest, since their performance

will not be greatly affected by the number of users in the system.

The slotted system assumption (1) leads to a discrete - time system, thus simplifying

the analysis. Synchronizing the users is not entirely trivial, but can be accomplished with

relatively stable clocks and some guard time between the end of a packet transmission

and the beginning of the next slot. The arsumption of Poisson arrivals (2) approximates

well the case of a large number of independent bursty users, The assumption of Collision

and Perfect Reception (3) ignores the possibility of errors due to noise, and also ignores

the possibility of Capture techniques, by which a receiver can capture one transmission
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Feedback (4) is quite unrealistic, particularly in the case of satellite channels. For-

tunately delayed feedback although complicates random access algorithms, causes no

fundamental problems.

A RAA is the combination of the CRA and the First Time Transmission Rule

(FTTR). It is distributed in nature, since action to be taken by each user is not based on

the knowledge of the status of the other users.

The oldest RAA is the ALOHA [4] algorithm. It was developed around 1970 to

provide radio communication between the central computer and various data terminals at

the campuses of the University of Hawaii. Each user with a new packet transmits this

packet at the beginning of the slot immediately after the packet arrival time. The feed-

back information is of the acknowledgment type. Therefore only the users that are

involved in a collision are informed about it. To resolve the collision the above users

select random time instants for the retransmission of their packets. As a result, the system

contains two types of users, at each time slot: those that have new packets to transmit,

and those whose packets have previously collided, and are attempting to retransmit

(Blocked Users). The Aloha algorithm was first analyzed by Abramson [4]. The number

of users was assumed infinite, and the number of new packets generated by the users at a

given time slot, was assumed to be Poisson distributed with rate X packets per slot. How-

ever, to simplify the analysis, some additional assumptions were made on the distribution

of the blocked users, and a steady - state equilibrium condition was assumed. Unfor-

tunately, a careful examination of the algorithm [5] shows that the system is unstable for

any X > 0, in the sense that the output rate eventually decreases to zero.

The ALOHA system with a fixed number M of users has also been studied [6]. It
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tion of the system is ergodic, if and only if the per packet retransmission probability p

can be chosen to satisfy the inequality

X< pM(1-p) M- 1

From this inequality the following conclusions can be drawn:

(a) If M---, then X cannot exceed e-1 .

(b) If X, p and M are such that the above inequality is satisfied. then there exists M0 ,

such that the system is not stable for all M > Mo. In other words the ALOHA algorithm

is sensitive to the number of users in the system.

Since the ALOHA algorithm is unstable under the infinite population model, the

natural question is whether the design of stable RAAs is possible. The existence of a

stable RAA, for the Poisson packet generating process, was shown independently [7] and

[8]. In those studies the channel is assumed slotted and the feedback informs all the

users in the system whether that slot contained zero, one, or more than one packet

transmissions (ternary feedback). The actions of the users depend only on the received

feedback. It is required that every user observes the feedback channel independently if he

has a packet to transmit, from the time the system started operating (continuous feed-

back sensing). The algorithm can operate even if the feedback is binary (informing

whether a slot contained more than one packet transmissions or not, or in other words

collision versus noncollision feedback), and it can be shown that it is stable if X < 0.345.

A modification of this algorithm increases its maximum throughput to 0.42. Under ter-

nary feedback, algorithms whose maximum throughpum is 0.487 [9],[ 101 have been dev-

ised. It can be shown however, that in the presence of feedback errors the latter algo-

rithms become unstable [ 11], while those with the binary feedback are still operational at
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The requirement of continuous feedback sensing is usually unrealistic. Commonly

in practice, a user becomes active only when he has a packet to transmit. Also in the case

of a failure, the continuity of channel sensing is interrupted. It is thus desirable to devise

algorithms which require that each user observes the feedback only when he is active.

Those algorithms are called Limited Feedback Sensing RAAs.

In 112] the first such algorithm was presented. Modifications that improve its per-

formance can be found in [13], [141 and [15]. The feedback is assumed to be either

binary or ternary, the algorithms have good delay characteristics for low arrival rates and

their maximum throughput varies from 0.36 to 0.4076. The analysis in [13], also shows

that the behavior of those algorithms in the presence of feedback errors is quite satisfac-

tory. In [16], [17] and [181 another class of limited feedback sensing algorithms was

presented. These algorithms can achieve throughput as high as the highest throughput

achievable by the known continuous-feedback-sensing algorithms, at the expense of a

small increase in delays and complication. They are also not blocked (i.e., they do not

lead to deadlocks), in the presence of feedback errors.

Three things are worth noting here:

(i) Both continuous and limited feedback sensing RAAs need more feedback sens-

ing than that assumed by the ALOHA algorithm. Indeed, the ALOHA algorithm requires

that each user know only the outcomes of his own transmissions. The existence of stable

algorithm for the infinite population model subject to an acknowledgement type of feed-

back is still an open problem.

(ii) The algorithms developed in [7], [8], [9] and [10] are called blocked access

algorithms. In that case, all users are able to identify the end of a Collision Resolution
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feedback continuously, (a CRI is defined as the time period between the time a collision

occurred and the time when all the packets involved in the collision have been success-

fully transmitted). On the other hand the algorithms developed in [12], [13], [14] and

[15] , are called free access algorithms. The latter algorithms do not need the channel

feedback history before the packet generation to determine the time of the first transmis-

sion attempt. (A user with a new packet, transmits this packet in the very next slot fol-

lowing packet's generation time).

(iii) The algorithms in [16], [17] and [18] exploit the fact that after a user becomes

active, a finite number of time slots is needed to determine the status of the channel, by

observing the feedback.

For a more detailed overview of the Random Access Problem and the proposed

algorithms, the interested reader is referred to [1], [9], [11] and [19].

1.2 OUTLINE OF THE Ph.D DISSERTATION

The work can be divided in two parts. The first part deals with Random Access Sys-

tems where the objective is not only throughput maximization and mean packet delay

minimization.

In the second part of the work, a method for delay distribution analysis of window

RAAs is presented. In more detail, the Dissertation is organized as follows:

Multiple Access Algorithms are generally designed to allow the successful

transmission of all the generated messages with finite delays. There are applications,
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threshold.

In Chapter I, we propose and analyze a window type RAA for time-constrained

applications. The algorithm guarantees that the total delay of each successfully

transmitted packet does not exceed a prespecified threshold, and it requires continuous

feedback sensing. The algorithm can be easily modified to operate under limited feed-

back sensing. For various thresholds on the transmission delays, and various input rates,

we computed tLe percentage of the successfully transmitted traffic and the expected

delay of a successfully transmitted packet. We found that significant improvement of the

expected packet delay is attained at the expense of minimal traffic loss.

In Chapter III, we consider the RAA proposed in Chaptcr E[ without imposing any

delay constraints. We perform throughput, delay, and feedback error sensitivity ana-

lyses. When the packet generating process is Poisson, the algorithm attains the same

throughput with that attained by the Capetanakis's Dynaniir. Algorithm [11], and it

induces lower mean packet delays for arrival rates above 0.30. The algorithm is very

insensitive to feedback errors. It operates in systems where the packet generating process

is not Poisson, (e.g where more than one packets can be generated at a given time

instant). It is worth noting here, that the algorithms in [9], [101, are blocked when more

than one packets can be generated at the same time instant. In the last section of this

chapter, we analytically evaluate the steady-state distribution of the distance between two

consecutive, successful transmissions, when the proposed algorithm is employed. The

latter distribution is important when one studies interconnected systems which employ

the algorithm for their internal transmissions. A typical example is the multi-hop prob-

lem, where part of the output (internally successfully transmitted packets) of a random
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In Chapter IV, a method for delay distribution analysis of Window RAAs is

presented. Window RAAs constitute an important subclass of RAAs; they are distribu-

tive and attain high throughputs and low delays by controlling the number of simultane-

ously transmitting users. The throughput analysis of algorithms in this class is a relatively

easy task. The delay analysis, however, presents difficulties, due mainly to the fact that

the window size is variable (we only impose a maximum window size), and the compli-

cated state space that the algorithms create. This restriction prohibits the application of

results from standard queueing theory in the delay analysis.

We show that the methodology employed in [20], can be extended to provide

bounds on the distribution of the delays. The quantities of interest are related to the

solution of a denumerable system of linear equations. Methods for the computation of

the constant terms and the coefficients of the unknowns of the system are developed. The

methodology is applied to the delay distribution analysis of the Capetanakis's Dynamic

algorithm [11], and the Part-and-Try algorithm [9] and [ 10], both under binary (collision

versus noncollision) feedback. It can also be applied directly to other Window RAAs

with different feedback. An interesting result of the analysis is that as the arrival rate

increases, the tails of the delay distribution become longer, but the median grows much

slower than the expected delay.

In the last Chapter, Chapter V, we consider a two-cluster packet radio network. In

each cluster a single forward channel is available for packet transmission. The frequency

bands dedicated to each cluster are different. Consequently, a packet transmission over

the forward channel in one cluster does not interfere with a packet transmission over the

forward channel of the other cluster. Each cluster contains local and marginal users. The
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The marginal users are located in the overlapping region of the two clusters. They are

capable of transmitting their packets over either one of the forward channels and, receiv-

ing feedback information from either one of the feedback channels. Due to the double

exposure the marginal users have a choice: they can join either cluster 1 or cluster 2 for

the transmission of their packets. In this Chapter, we propose a dynamic protocol accord-

ing to which a marginal user can select the forward channel over which he will transmit

his packet. The protocol requires that each marginal user with a packet for transmission

observes both the feedback channels from the packet's generation time. No a priori

knowledge of the input traffic rates or the state of the system is required.
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CHAPTER I

A CONTINUOUS SENSING WINDOW RANDOM-ACCESS ALGORITHM FOR MESSAGES

WITH STRICT DELAY CONSTRAINTS

11.1 INTRODUCTION

We consider the case where a number of geographically distributed stations wish to

communicate by transmitting messages over a single channel. The problem then is the

design of efficient algorithms for allocating the channel among the users. This problem is

referred to as the Multiple-Access problem, and the algorithm employed is called a

Multiple-Access Algorithm (MAA). The main performance measures of an algorithm are

generally throughput, induced delays, and error sensitivity. In addition, Multiple-Access

algorithms are generally designed to allow the successful transmission of all the mes-

sages generated in the system with finite delays.

There are applications, however, where a message is considered lost if its delay

exceeds a certain threshold. Typical examples of such applications are the following:

a) The transmission of control messages that are required to monitor remote devices

within a specified amount of time.

b) Distributed target-tracking, where a user attempts to track a moving target by using

local observations and the information received from the other users.
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Recently, there has been considerable interest in the design and analysis of algo-

rithms suitable for time-constrained applications. Those algorithms disregard the

transmission of a message if its delay exceeds the given threshold. Therefore, a percen-

tage of the generated traffic is lost.

Random Access Algorithms constitute an important subclass of Multiple Access

Algorithms, and it is of considerable interest to design such algorithms that will operate

efficiently and reliably under strict constraints on the delays of the generated messages.

As discussed in [21], the advantages of the Random Access Algorithms for time con-

strained communications are "guaranteed connectivity, the transfer of temporary over-

loading into packet delay rather than blocked connections, and the ability to trade mes-

sage loss for message delay". The major disadvantage is that a Random Access Algo-

rithm induces variable message delay.

Simulation and experimental studies of the performance of the Ethernet Protocol

under time constraints can be found in [32], [33]. Window Access protocols for time con-

strained communication have been considered in [22]. In [22], it was assumed that con-

straints are imposed only on the time elapsed from the generation time of a message to

the time of its first transmission attempt. No restriction was imposed on the additional

delays experienced by a message when its first transmission attempt is not successful.

Furthermore, an approximate model of the system was developed and analyzed. This

model, however, fails to take into account the fact that window sizes are necessarily vari-

able in a real system.

In this chapter, we propose and analyze a window Random-Access algorithm for
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that the users observe the channel feedback continuously (continuous feedback sensing).

We point out that the algorithm can be easily modified to operate under limited feedback

sensing, where the users are required to observe the feedback only whenever they have a

message to transmit. However, the analysis of the algorithm is much more involved in

the latter case.

This chapter is organized as follows: In section 11.2, we present the system model.

In 3ection 11.3, we present the operation of the algorithm. In section II.4, we extend the

basic ideas presented in [201 to provide an exact analysis of the time-constrained algo-

rithm. The performance of the algorithm is discussed in section 11.5.

11.2 SYSTEM MODEL

The transmission delay of a message in a communication network is defined as the

time period between the instant that the message is generated and the instant when its

successful transmission has been completed. When a strict upper bound on the transmis-

sion delays is imposed, some messages are lost. Important performance criteria in this

case are the fraction of the lost message traffic and the expected transmission delays of

the transmitted messages.

In this chapter,we consider a random access packet network with upper bounds on

the packet delays. In particular, we assume that a common slotted channel is shared by

packet transmitting independent users, that the feedback per slot is binary CNC (collision

versus noncollision), and that the feedback channel is errorless. We also assume that col-

lisions result in total loss of all the involved packets, a packet transmission may start only

at the beginning of some slot, and that there are no propagation delays. Finally, it is

assumed that the packet generating process is Poisson. This is a reasonable assumption



15

since we assume a large number of independent bursty users. Furthermore in [28] we

prove that for a large class of Random Access algorithms (RAAs), and given a fixed

value for the cumulative packet generation rate, as the user population increases the sta-

bility of an algorithm in the class is determined by its throughput under the Poisson user

model. For the above system model we propose and analyze a continuous feedback sens-

ing random access algorithm. Additionally the method we develop is also applicable to

the case where the number of packets generated per slot forms an i.i.d process with gen-

eral distribution (this may be the case in some synchronized systems), and to the finite-

population user model.

11.3 THE ALGORITHM

Let T be the upper bound on the packet transmission delay, and let it be common to

all users. Let t be a time instant corresponding to the beginning of some slot, such that,

for some t 1 < t, all the packet arrivals in (0, t I] have been either successfully transmitted

or rejected by the algorithm, and there is no information regarding the arrival interval

(tl, r] , (Fig.II.1). Such a point t is called a "collision resolution point" (CRP). Let time

be measured in slot units. Then, in slot t, the arrivals in (t2, 13] transmit, where for A

being an algorithmic constant we have: t2 = max (t - (T-1), tI) and t 3 = min(t 2 + A, t).

At the same time, the arrivals in (1 , t2] are automatically rejected, because their

transmission delay has exceeded T. The arrival interval (0, t above is called "resolved

interval," the interval (2. t] is called the "lag at C, az.d the arrival interval (2 t31 is

called the "examined interval." If (2, t31 contains zero or one packets, then it is

resolved at slot t. If (2, t3] contains, instead, at least two packets, then a collision

occurs at t, whose resolution begins at slot t + 1. Until the collision at r is resolved, no
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the resolution of the latter collision is called the "collision resolution interval" (CRI). Let

d=t-t 2 be the length of the lag at t. The length of the collision resolution interval is not

allowed to exceed A =T-d. Thus, packets in (t2, t3], that are not successfully transmitted

by time t+A, are rejected. This last rule assures that all the successfully transmitted pack-

ets have delay less than T. Note that under this rule it is possible that a packet (e.g.,

packet 2 in Fig. 11.1) with delay T-A, and not T, be rejected. However, as we shall see in

section 5, the optimum value of A is close to 2 slots and, therefore, this rule does not

represent any severe restriction in practice.

Let xf denote the feedback corresponding to slot t, where either xt = c, for collision

slot, or x, = nc , for noncollision slot. During some CRI, each involved user acts

independently, utilizing a counter, whose value at time t is denoted by rt . When a user

transmits a packet for the first time he sets r, = 1. The value of r, is updated and used as

follows:

I. The user transmits each time t that r, = 1 . The corresponding packet is successfully

transmitted at t if and only if,

rt = 1 and xt = nc

2. The transitions in time of the counter value r, are as follows:

(a) Ifxt-1 = nc and rt- 1 = 2, then r, = 1.

(b) Ifxt-1 = c and r1 _1 = 2, then r, = 2.

(c) If x1_ = c and r,_1 = 1, then

I w.p. 0.5
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The algorithmic operation can be depicted by a two cell stack. At each slot t , cell I

contains the transmitting users (those with r, = 1 ), and cell 2 contains the withholding

users (those with r, = 2 ). In contrast Capetanakis's algorithm distributes the unsuccessful

users across the cells of an infinite cell stack. The algorithm allows every user in the sys-

tem to determine accurately the time instant r' when a CRI has ended; a CRI ends either

when two consecutive noncollision slots occur, or when its length equals T-d where d is

the length of the lag at the beginning of the CRI. Then, the algorithm reinitializes with a

new examined interval. We note that the algorithmic parameter A is subject to optimal

selection, for performance enhancement.

I II

jmd-- 1 lu,d<T-d

I I
I I

I I
I I
I Ipacket #1 packet 02

' 2

I I
I I

Figure II. 1

Illustration of the relationships among certain random

variables related to the operation of the algorithm.
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11.4 ANALYSIS

Consider the algorithm in section 11.3. Let the system start operating at time zero,

and let us consider the sequence in time of lags that are induced by the algorithm. Let Xi

denote the length of the i-th lag, where i>_I. Then, the first lag corresponds to the empty

slot zero; thus, X1 = 1. In addition, the sequence Xi; i21 is a Markov chain whose state

space is at most countable. Let D, denote the delay experienced by the n-th successfully

transmitted packet arrival, as induced by the algorithm; that is, the time between the

arrival of the packet and its successful transmission. Let the sequence Ti, i>_l be defined

as follows: Let T1 = 1 , and define Ti, 1 as the first CRP after Ti at which the lag has

length one.

Let R i , i l and Fi, i2!l denote respectively the number of successfully transmitted

packets and the number of rejected packets in the time interval (0, Ti]. Then,

Qi = Ril - Ri, i>_l and Gi = Fi+1 - Fi, i>_l denote respectively the number of success-

fully transmitted and the number of rejected packets in the interval (Ti , Ti+l]. The

sequences Qi, i>l and Gi, i>_l are sequences of i.i.d. random variables; thus Ri, i>_l and

Fi, i _1 are renewal processes. In addition, the delay process Dn, n2!1 induced by the

algorithm is regenerative with respect to the process Ri, i2_l and the distribution of Qi is

nonperiodic, since P (Qi = 1) > 0.

Let us define,

Q1
Z = E(Q 1), W = E( DO}, H = .{(T 2-T} (1I.1)

i=1

From the rebenerative arguments in [201, it follows that the fraction, p, of success-

fully transmitted packets, and the expected steady-state delay, D, of the successfully

transmitted packet are respectively given by the following expressions:
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p = Z(Xl) -  (11.2)

D) = WZ - ' (11.3)

where X is the intensity of the Poisson packet generating process.

Towards the computation of the expected values Z, H, and W, let us define the fol-

lowing quantities (see Figure 11.1), where t 2 , t 3 , and t are as in section 11.3:

nu.a :Number of packet arrivals in [t 2 , t3) that are successfully transmitted

during the collision resolution process, given that t 3-t 2 = u., and t-t 2 =d

Zu, d :Sum of the delays of the nud packets, after time t.

Vu.d: Sum of the delays of the nu.d packets, until the instant t 3

lu.d " The number of slots needed to examine an interval of length u given that

t-t 2=d. Note that lu,d < T-d.

E(X I u,d} Conditional expectation of the random variable X, given that the length of

the initially transmitted interval is u, and t-t 2=d.

hd • The number of slots needed to reach a CRP with lag equal to one,when

starting from a CRP with lag equal to d.

wd : The cumulative delay experienced by all the packets that were success-

fully transmitted during the hd slots.

ad • The number of packets that are successfully transmitted within the interval
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P(1 I u,d): Given that the interval to be examined has length u and t -t 2-d, the proba-

bility that the corresponding collision resolution interval has length I.

Hd = E(hd}

Wd = E {wdj (11.4)

Ad = E(ad}

We note that the quantities in (2), (3), and (4) are such that,

Z=A1 , H=H1 , andW=W1. Denoting by xd either one of the random variables

hd, wd, ad, the operations of the algorithm in section 11.3 induce the following relation-

ships.

Od +Xtd L T-dJ ldd>I
d =  Od d.d=l ; 1 d-A 1.5)

Xd = Od + Xd-A+,.d ; T-1d>A

where L a] denotes integer part of a, and
Slmin(A~d).d ; for the r.v. hd

Od W4'min(eA.d),d + Z mintA, d),d + max(d-A,O)n,,mi(Ad),d ; for the r.v. wd (11.6)

rnmin(A.d),d ; for the r.v.ad

Taking expectations in (5), and denoting Xd=E~xdj, we obtain:

Lr-4
Xd=E(Od}+ , XmP(mId,d) ; l<d:5A

m=2

(11.7)

Xd = E(Od) + Y, Xd-&+m P(m I A,d) • A < d < T-1
m=1

where d takes at most denumerable values in [1,T-11. In (7), the index m takes

values up to L T-4j because 1,.d < T-d.
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Note that the system in (7) is a finite system. Moreover, if A is an integer, then d

can only take integer values in [1, T-I1. In either case, the system is of the following

form:

" = b + 8F or (I--)1 =b

where ( is a strictly substochastic irreducible matrix. It follows [341 that if b_>O, then the

system in (7) has a unique nonnegative solution. In Appendix A, we include the recur-

sions pertinent to the computation of E{O} and P(l I u, d). The latter recursions, in con-

junction with the system in (7), provide the fraction of the successfully transmitted traffic

and the expected delay of the successfully transmitted packets, for given T, A and X.

Given the latter parameters, the quantities in (2) and (3) are functions of them; we will

denote them by, Pr(A,X) and DT(A,X), resp,"Lively.

11.5 PERFORMANCE EVALUATION

The value of A is a basic design parameter for window Random Access Algorithms.

If no delay constraints are imposed, A is chosen so that the stability region of the algo-

rithm is maximized. For systemq with strict delay constraints, an upper bound T on the

transmission delay of each successfully transmitted packet is given. Since a fraction of

the generated packets is then rejected, an important quality measure in this case is a

lower bound, e 1 , on the fraction of the successfully transmitted traffic. Given T and e I as

above, the value of A is determined from the following optimization problem : Deter-

mine A, so that the input traffic rate is maximized while the fraction of the successfully

transmitted traffic remains greater than e I. That is, the quantity )4 e, below is sought.

r un n,1 (A I)' > A''
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Due to the complexity of the expression that provides the system parameter

PT(A, X), it is hard to solve the optimization problem in (8) in an analytical fashion. For

fixed A, however, it is simple to compute the quantity XT, e, (A) defined below.

, (A) = sup (X : PT(A ) - e) (.9)

In table 11.1 we exhibit the ;. e(A) values, for A= 1.5, 2, 2.5, 3, and various

values of the parameters T and e 1 . From the above table, we observe that the algorithm is

relatively insensitive to the selection of the parameter A, for the A E [2, 3].

If in addition to e 1 , it is also desirable to impose an upper bound e 2 on the expected

delay of the successfully transmitted packet, then the value of A is determined from the

following optimization problem: Select A so that the quantity X;. e.e 2 , defined below, is

attained.

XT, ei, e 2 = 0 SUFI(?" : PT(A, X) >_ e I, DT(A, X.) < e 2 ) (1.10)

The analytic determination of X- e1 . e2, is again not feasible. We thus compute instead

the rates . e1, e12 (A) defined below.

XT.. e. e 2 (A)= sup (.: PT (A,).) _ e1 , DT(A,?.)< e 2 ) (II.11)

In table 11.2 we exhibit X4;. e1. 1 2(A) values, for A = 1.5, 2, 2.5, and 3, and for various

values of the parameters T, e 1, and e 2 . For A E [2,31, we observe again insensitivity of

the algorithm to the selection of the parameter A.

From table 11.1 we observe that for fixed eI and A, 4 e (A) is an increasing func-

tion of T. In contrast, from table [1.2 we observe that for fixed e 1. e2, and A, there exists

some Tm.(el. e 2. A), such that .;.ei.e 2(A) increases for 1 <T <Tm(e . e2. A) and

decreases for T > Tma,(ej, e 2. A). The latter observation can be explained as follows:
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cessfully transmitted traffic. For large T values, on the other hand, the determining fac-

tor is the constraint on the expected delay of the successfully transmitted packet.

It is interesting to compare the performance of the algorithm under strict delay con-

straints, to its performance when no such constraints are imposed. In the latter case, for

input traffic rates within the stability region of the algorithm, the fraction p of the suc-

cessfully transmitted traffic equals one, and the throughput represents then the maximum

maintainable rate of the input traffic. In Appendix A, we compute relevant useful

bounds. Using those bounds and the methodology in [20], we compute the throughput

t*, the optimal parameter A* that attains jt*, and the expected delays D-*(A*, X) for

Xk(0, *t ). We found:

gt* = g*(A*)= 0.429 , A* = 2.33 (11.12)

Figure H.2, illustrates expected delays for various values of T and for A=2.. In the

same Figure we illustrate the delays induced when no delay constraints are imposed. In

Figures 11.3 and II.4 we illustrate the fraction of the successfully transmitted traffic and

the successfully transmitted traffic respectively, for various values of T and for A=2. We

observe that for input traffic rates above 0.30, imposing strict constraints on the delays of

the successfully transmitted traffic results in significant improvement on the expected

delay of the successfully transmitted packet; the price paid then is loss of some of the

generated traffic. For example, for X = 0.4, A = 2, and T=20, the algorithm attains

P20(2, 0.4) - 0.95 , and D20 (2,0.4) - 7.6, versus D,_ (A*, 0.4) - 19 in the absence of

an upper bound T, while for T = 20 the delay of each -.uccessfully transmitted packet is

simultaneously not exceeding 20 slots. The tradeoff between acceptable delays and

acceptable loss in traffic is determined by each particular application.
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feedback [11]. Compared to Capatanakis's algorithm, the proposed algorithm has the

property that both the unconstrained and the constrained version can be easily modified

to operate under limited feedback sensing. This is because during a collision resolution

process, no more than two consecutive noncollision slots can be encountered. This pro-

perty can be used to provide a limited feedback sensing version of the algorithm

presented in this chapter (see also [171, [181). It is also important to note that due to the

very simple rules of the collision resolution process, the algorithm is less sensitive to

feedback channel errors than the Capetanakis's dynamic algorithm. A complete analysis

of the unconstrained version of the algorithm is presented in Chapter III. The following

argument can be used, however, to justify our claim: Let 8 be the probability that an

empty slot is erroneously interpreted as a collision slot, and assume that this is the only

form of error on the feedback channel. Let BO) , EO ) , SO ) be respectively the average

number of collision, empty and successful slots during a multiplicity k collision resolu-

tion process. Let LO) be the average number of slots needed for a multiplicity k collision

to be resolved. It is easy to see that

BO8)=B 0 ), S )=S0), E 0)=E)0 1 058 < 1, k_ 2 (11.13)(1-6)'-

It follows that

LO8 ) =B°)+S°)+E ° )  
_ LP)+ET) < L °)  I "0 <1, k>2 (11.14)

(1-6) (1-8) - (1-)
It can also be seen that

L)= 1 •<8<1 (11.15)

(118)2 ;0:'8 l

If f 8 ix)= LO)exxk!, the throughput X; of the algorithm is
k --O
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S-> X((I--6) 2  (11.16)

Therefore, the throughput of the algorithm remains positive for 0 8 6 < 1. It is well

known [I I], however, that the throughput of Capetanakis's algorithm reduces to zero for

8>0.5.

Gallager's algorithm [11], can also be modified to operate under delay constraints.

The method developed in this chapter can be applied to the analysis of the latter algo-

rithm, but the computations become much more involved and greater care is needed

since the developed systems of linear equations become infinite. For systems where the

Poisson user model is valid, it is expected that the modification of Gallager's algorithm

will provide improved performance. One advantage of the algorithm presented here, is

that it can operate in systems where the Poisson user model is not valid (e.g. when more

than one packets are generated at a specific instance due to synchronous transmission), in

contrast to the algorithm in [Ill, and that analytical evaluation of its performance and

optimal choice of the design parameter A is then feasible.

11.6 CONCLUSIONS

We considered the case where strict constraints on the delays of successfully

transmitted packets are imposed. For this case, we presented, analyzed, and evaluated a

simple random access algorithm. The algorithm requires continuous feedback sensing.

We analyzed the algorithm under the Poisson user model assumption. The analysis of the

algorithm is based on its regenerative characteristics. For various bounds on the

transmission delays and for various input rates, we computed the percentage of the suc-

cessfully transmitted traffic and the expected delay of the successfully transmitted
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the successfully transmitted packet is attained. The possibility of employing other win-

dow Random-Access algorithms, and their advantages and disadvantages as compared to

the algorithm presented here is also discussed.
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Fraction of the transmitted traffic versus input rate,

A =2.
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T A- 1=.S 4=2 A-42.5 1 =3
.99 0.038 0.038 0.038 0.037
.95 0.142 0.144 0.140 0.140
.90 0.243 0.257 0.240 0.238
.99 0.150 0.160 0.150 0.143

10 .95 0.290 0.300 0.285 0.280
.90 0.372 0.380 0.364 0.360
-.99 0.242 0.247 0.240 0.230

15 .95 0.348 0.361 0.352 0.343
.90 0.408 0.425 0.20 0.405
.99 0.29 0.306 0.' 0.284

20 .95 0.3 3 0.392 0.383 0.374
9 0.423 0.445 0.435 0425
.99 0.314 0.333 0.319 0.309

25 .95 0.406 0.42 0.416 0.407
.90 0.439 0.462 0.452 0.442
.99 0.330 0.350 0.335 0.325

30 .95 0.427 0.448 0.437 0.428
.90 0.450 0.474 0.464 0.452

Table II. I

Maximum throughput as a function of T and e1
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T e. er A=1.5 1 A=2 I , 42. -I3
0.150 0.160 0.150.13I

.99 S 0.150 0.160 0.150 0.143

7 0.150 0.160 0.150 0.143
3 0.260 0297 0.235 0.280

95 5 0.290 0.300 0.285 0.280
7 0.290 0.300 0.285 0.280
3 0.220 0.240 0.240 0.230

.99 5 0242 0.247 0.240 0.230
7 0.242 0.247 0.240 0.230

15
3 0.220 0.240 0.320 0260

.95 5 0.322 0.361 0.352 0.343
7 0.348 0.361 0.352 0.343
3 0.209 0.230 0.240 0.240

.99 5 0.289 0.306 0.319 0.284
7 0.289 0.306 0.319 0.28420 - . __

3 0.209 0.230 0.240 0.240
•95 5 0.289 0.322 0.340 0.340

7 0.347 0.383 0.384 0.374
3 0.181 0.198 0.198 0.196

.99 5 0.313 0.329 0.356 0.317
7 0.313 0.329 0.356 0.322

30 - - - - - -

3 0.181 0.198 0.198 0.198
.95 5 0.313 0.345 0.380 0.380

7 0.376 0.407 0.408 0.393

Table 11.2

Maximum throughput as a function of T, e1 , and e 2
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CHAPTER III

A WINDOW RANDOM ACCESS ALGORITHM

FOR MULTI-USER PACKET RADIO SYSTEMS

III. INTRODUCTION

In data networks with bursty users, the most appropriate multiple-access techniques

are those belonging to the class of Random Access Algorithms (RAAs). This is due to

the fact that RAAs are distributed, and they induce low delays for low input rates.

The important performance characteristics of a RAA are: throughput, induced

delays, and sensitivity to feedback channel errors. Insensitivity to feedback errors is

important when operating under noisy conditions. Different sources of noise include: (i)

interference between closely located cells, which use the same frequency band (multi hop

networks), or, (ii) multi-path fading. The effects of noise can be modeled as erroneously

observed feedback, see 135].

In this chapter, we consider the RAA presented in chapter 1 without imposing any

delay constraints; i.e., T = -. We then perform throughput, delay, and feedback error

sensitivity analyses. We also evaluate the output traffic interdeparture distribution

induced by the algorithm.

Under the Poisson user model assumption, the algorithm attains the same

throughput with that attained by the Capetanakis's dynamic algorithm, [11], while it

induces lower delays for arrival rates above 0.30. It also exhibits better resistance to feed-
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back errors. The evaluation of the output traffic interdeparture distribution is important,

in the case of interconnected networks each of which employs the RAA for internal

transmissions. The evaluation of the latter distribution when either the Capetanakis's,

[111, or, the Gallager's, [11], algorithms are used remains an open problem.

The organization of this chapter is as follows: In section 111.2, we present

throughput and delay analysis. In section 111.3, we present feedback error sensitivity

analysis, and discuss the operation of the algorithm under limited feedback sensing. In

section 111.4, the output traffic interdeparture distribution, induced by the algorithm, is

evaluated. In section 111.5, some conclusions are drawn.

111.2 THROUGHPUT AND DELAY ANALYSES

In this section, we present throughput and delay analyses of the algorithm. We

assume continuous feedback sensing and the Poisson user model.

Consider the algorithm in Section 11.3. Since we do not impose any delay con-

straints, we have that tI = t 2 . Let the system start operating at time zero. Let ri ; i > I be

the sequence of successive CRPs, and X be the lag at ti. The sequence Xi ; i > 1 is a

Markov Chain with state space F, F is an at most denumerable subset of the interval [I,

ee). It can be seen that any state can be reached from any other; therefore Xi ; i > I is an

irreducible Markov Chain. Since P (Xi~j = I I Xi = 1) > 0, we conclude that X; i > 1 is

also aperiodic. Therefore Pake's Lemma [301 applies, and gives that the following condi-

tion is sufficient for the ergodicity of the Markov Chain, (stability of the system):

E(I I A,d) <A (1lI.l)

where E (I I A,d) denotes the expected length of a CRI, given that it starts with an exam-

*--A ;---I "f lpnoth A nnd with a lag of length d.
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Since the Markov Chain is uniformly downward bounded (there exists a constant m

such that the transition probabilities Pkj satisfy Pkj = 0 for j < k - m. Here m = A - 1),

Kaplan's Theorem [31] applies and gives that:

If

E(I IA,d) > A

then the Markov Chain is not ergodic and the system is unstable.

Let Lk denote the expected length of a CRI given that it starts with a collision of

multiplicity k. We can then write:

E(I IA,d)= XE(l IA,d,k)e (XA)k 0e - L (A)k

k- k (m.2)

since

E(l I A,d,k)=Lk (1I1.2a)

depends only on k.

In Appendix B we show that:

(i) Lk ; k 2t 0 can be computed recursively, and

(ii) Lk are quadratically upper bounded, Lk 5 L = /ck2 + 3k + y; k > 2.

Expression (1) together with (i) and (ii) are used in the computation of the algorithmic

throughput. The details of the analysis are presented in Appendix B.

We define the delay Dn, experienced by the n-th packet as the time difference

between its arrival and the end of its successful transmission. We are interested in

evaluating the first moment of the steady state delay process, when it exists. Let T, = 1,

X I = I , and define Ti., as the first CRP after T at which the lag has length one. From

the description of the algorithm it can be seen that the induced delay process probabilisti-

cally restarts itself at the beginning of each slot T , i = 1 ,2, ... The interval [Ti,Ti,4 )

will he referred to as the i-th session. Note that the sessions have lengths that are i.i.d ran-
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dom variables.

Let Ri ; £ = I ,2 d uenote the number of packets sucessfully transmitted in me

interval (0, Ti ]; (note that Ri also represents the number of packets arrived during the

interval [0, Ti - 1), since T is a CRP at which the lag has length one). Then,

Qi = Ri - Ri ; i _> 1, is the number of packets successfully transmitted in the interval (

Ti,Ti+1 I , these are the packets that arrived during the interval [ Ti - 1,Ti+l - I ). The

sequence Ri ; i > 1, is a renewal process since Qi ; i > 1, is a sequence of nonnegative

i.i.d random variables. Furthermore, the delay process Dn ; n > 1, is regenerative with

respect to the renewal process Ri ; i > 1, with regeneration cycle Q 1. From the regenei.-

Q1
tive theorem [201, we conclude that if Q = E (Q 1) < - and W = E { , Di} < 00, then

i=l

there exists a real number D such that,

I n W

D= limn - 'D i = limn-E(YDi) = - (111.3)
n--, i=1 n--+ i=1 Q

The first and second equalities in (3) above, are w.p. I In addition, since

P (QI = 1) > 0, the distribution of Q1 is aperiodic and there exists a random variable D .

such that the sequence D, ; n - I converges in distribution to D_. D_* represents the

steady state delay induced by the algorithm and its mean satisfies the equality

WE(D *) -- (171.4)
Q

The quantity D will be referred to as the mean packet delay. From (4) we observe that the

mean packet delay can be determined by computing the quantities of the right hand side

of the equality. In Appendix B we develop two systems of linear equations whose solu-

tion may be used to compute the mean cycle length Q and the mean cumulative delay W.

In Table 111. 1, we include the computed upper and lower bounds, D" and D' respec-
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proposed and the Capetanakis's dynamic algorithms.

Proposed algorithm Capetanakis dynamic
_ _ algorithm

. D DS D' DM

0.02 1.562 1.563 1.563 1.564
0.06 1.708 1.716 1.713 1.719
0.10 1.888 1.917 1.903 1.921
0.16 2.257 2.363 2.308 2.362
0.20 2.607 2.812 2.712 2.809
0.24 3.103 3.467 3.308 3.476
0.30 4.412 5.197 4.976 5.365
0.32 5.162 6.170 5.973 6.501
0.36 7.941 9.665 9.798 10.883
0.38 11.008 13.398 14.121 15.855
0.40 18.262 22.024 24.427 27.736
0.42 57.354 67.665 78.530 90.212

Table HI. 1

Upper and Lower Bounds on Steady-State Expected Delays

Regarding the throughput X* and the optimal window size A*, the following results have

been found.

Proposed Algorithm: X' = 0.4295 A*2.33
Capetanakis' Dynamic Algorithm: X = 0.4295 A = 2.677

Table 111.2

Throughputs and Optimal Winidow Sizes

From Table 111.2, we observe that, under the Poisson user model, the algorithm in
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algorithm, but uses a smaller window size. From Table 111. 1, we observe that the two

algorithms induce practically identical delays for Poisson rates in (0, 0.30), while for

Poisson rates in (0.30, 0.421, the proposed algorithm induces lower delays.

Remarks It may seem surprising that the algorithm in this chapter attains the same

throughput with that of the Capetanakis's dynamic algorithm, since the expected lengths

Lk in (2a) are bounded by a quadratic function of k, while the corresponding lengths for

the Capetanakis's algorithm, Lk , are bounded by linear a function of k. An intuitive

explanation is as follows: The proposed algorithm is on the average faster than the

Capetanakis's algorithm, when the collision multiplicity is 2, since L 2 = 4.5 and L2 = 5.

For collision multiplicities higher than 2, the proposed algorithm is on the average slower

than Capetanakis's algorithm since Lk > Lk, k > 3. Furthermore, the probability of a

higher than two collision multiplicity for the proposed algorithm, is smaller as compared,

to the corresponding probability for the Capetanakis's algorithm (this is because the pro-

posed algorithm uses a smaller optimal window). The advantage of the proposed algo-

rithm for collision multiplicities equal to 2, is balanced by the advantage of the

Capetanakis's algorithm for collision multiplicities greater than 2.

111.3 PERFORMANCE UNDER

FEEDBACK ERRORS AND OPERATION UNDER LIMITED

FEEDBACK SENSING

In this section, we study two important characteristics of the algorithm. Its perfor-

mance under feedback channel errors, and its operation and under limited feedback sens-

ing.
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111.3.1 Performance Under Feedback Errors

Let us assume that due to noisy condiiicas, the fuLlowing types of feedback errors

may occur: With probability e an empty slot may be perceived by the users as a collision

slot. Also, with probability 3 a slot occupied by a single transmission may be perceived

by the users as a collision slot. We assume that a collision slot is always recognized

correctly by the users. We consider the case where the probabilities E and 8, are known a

priori. Then given e and 8, the window size A is optimized for throughput maximization.

We performed throughput analysis, (the details are included in Appendix B), for both the

proposed algorithm and the Capetanakis's dynamic algorithm, [1]. We exhibit the

results in Table 111.3. From Table 111.3, we conclude that the proposed algorithm is very

insensitive to feedback errors. Even for the practically extreme case C = 8 = 0.1, the

throughput is almost 90% of its value in the error free case. We also conclude that the

proposed algorithm allows operation (positive throughput) as long as e < 1 and 8 < 1,

while if £ 2! 0.5 the throughput for the Capetanakis's algorithm is zero. We notice for

example that for £ = 0.5 and 8 = 0, the proposed algorithm attains throughput equal to

X* = 0.325.
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e S ? proposed alg. X* Cap.
0.00 0.00 0.4295 0.4295
0.00 0.01 0.4248 0.4258
0.00 0.10 0.3873 0.3920
0.00 0.20 0.3463 0.3535
0.00 0.40 0.2655 0.2731
0.00 0.50 0.2251 0.2310
0.01 0.00 0.4272 0.4272
0.10 0.00 0.4117 0.4043
0.20 0.00 0.3930 0.3706
0.40 0.00 0.3503 0.2329
0.45 0.00 0.3382 0.1524
0.50 0.00 0.3250 0.0000
0.60 0.00 0.3050 0.0000
0.70 0.00 0.2750 0.0000
0.80 0.00 0.2280 0.0000
0.90 0.00 0.1700 0.0000
0.10 0.10 0.3706 0.3672
0.20 0.20 0.3139 0.2972
0.30 0.30 0.2589 0.2166
0.40 0.40 0.2064 0.1205
0.30 0.50 0.1885 0.1511
0.30 0.70 0.1183 0.-86
0.90 0.90 0.0105 0.0000

Table 111.3

Throughputs as a function of E and 8. Window sizes optimized for every pair (E, 8)

In some systems, the probabilities r and 8 may not be known a priori. In this case,

we designed the algorithm subject to the assumption of error free feedback. The

corresponding results are shown in Table III.4.

I
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6 prop. aig. X* Cap.

0.00 0.00 0.429 0.429
0.00 0.01 0.424 0.410
0.00 0.10 0.386 0.391
0.00 0.40 0.255 0.262
0.01 0.00 0.427 0.427
0.10 0.00 0.408 0.401
0.20 0.00 0.377 0.355
0.3 0.00 0.320 0.248
0.3305 0.00 0.289 0.000
0.37 0.00 0.214 0.000
0.3787 0.00 0.000 0.000
0.10 0.10 0.363 0.361
0.10 0.20 0.318 0.318
0.10 0.30 0.273 0.272
0.20 0.10 0.328 0.311
0.20 0.20 0.279 0.266
0.20 0.30 0.232 0.221
0.30 0.10 0.261 0.192
0.30 0.20 0.205 0.138
0.30 0.30 0.153 0.088

Table 111.4

Throughputs as a function of F and S. Window sizes unchanged for every pair (c, 8)

From Table 111.4, we observe that the proposed algorithm is better than the Capetanakis's

algorithm. For example the maximum F value for which the proposed algorithm is stable

is 0.378, while the Capetanakis's algorithm becomes unstable for E > 0.33.

111.3.2 Operations Under Limited Feedback Sensing

Under limited sensing, it is required that each user monitors the channel feedback

from the time he generates a packet, until the time his packet is successfully transmitted.
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our objective is to prevent transmission of new arrivals until the current collision resolu

tion process has been completed. The latter can be accomplished, provided that each

user with a new arrival can decide, in a finite number of slots, whether a collision resolu-

tion process is in progress. A user with a new arrival, who observes a C slot, decides to

wait because he deduces that collision resolution is in progress. Two consecutive NC

slots correspond to either two consecutive CRIs of length one, or, to the end of a CRI

which started with a collision slot. Therefore, if two consecutive NC slots are observed,

the user decides that the system is empty. Summarizing, under limited feedback sensing

the algorithm can be modified as follows:

The window size remains the same as in the case of continuous feedback sensing. The

window slides through the unexamined interval from the current time to the past (since a

user with a new arrival has no information regarding the events that happened prior to the

arrival time). Its edge is maintained one slot before the current time, (see also Figure III. 1

). Within a CRI, the algorithm operates exactly as under continuous feedback sensing.

For very light input rate a user with a new arrival will observe an empty slot (arrival

slot) with high probability. He then waits for the next slot (observation slot) which will

be also empty with high probability. The observation slot being empty, the user

transmits in the subsequent slot (transmission slot). Based on the light input rate condi-

tion, we silently assume that no collision occurs over the transmission slot. Because

Poisson arrivals over a time interval are uniformly distributed, we may infer that the new

packet will show up in the middle of the arrival slot; i.e., delay over the arrival slot

equals 0.5. Adding up the delays over the arrival, observation, and transmission slots, we
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As the input rate increases, a user with a new arrival observes a collision slot with

high probability, and waits for its resolution (occurrence of two consecutive NC feed-

backs). Therefore, under heavy traffic conditions, a new user can determine the status of

the channel immediately upon arrival (without the waste of any observation slots). Con-

sequently, the total delay equals that under continuous feedback sensing. The throughput

of the algorithm remains identical to that under continuous feedback sensing (since the

window size, and the ,uk',,sion resolution algorithm are the same in both cases).

I . d

I

A

ct

slot

,U R U c. ct
1 ~E-*-- U

slot

dd

adjust I , ct

slot

U: unresolved interval ct: current time

R: resolved interval

Figure 111. 1

Window selection in the limited sensing case.
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111.4 THE OUTPUT TRAFFIC INTERDEPARTURE DISTRIBUTION

In this section, we analytically evaluate the steady-state distribution of the distance

between two consecutive, successful transmissions, when the proposed algorithm is

employed. The algorithm generates an output traffic process with memory. Conse-

quently, our computations correspond to the first order distribution from this process.

The first order distribution together with a memoryless assumption, may be used as an

approximation of the actual output traffic process, when one studies interconnected sys-

tems which employ the algorithm for their internal transmissions. Typical example is the

multi-hop problem, where part of the output (internally successfully transmitted packets)

of a random access system has to be transmitted through another random access system.

The methodology utilizes the regenerative character of the output traffic process.

We define the sequence [Pj}i> as follows: Each Pi is a collision resolution point,

(CRP), which follows a slot containing a successful transmission and at which the lag

eqjals one. P 1 is the first after zero such CRP, and for every i>1, Pj+1 is the first after

Pi such CRP. Let Si. i>l denote the number of 5 -( "ssful transmissions in (0, Pi], and

let d, denote the distance between the (n-l)-th and the n-th successful transmission.

Then, Si, i>l is a renewal process, and the process d,. n!l is regenerative with respect to

it. Let us define, Ci =Si+i -Si, i!l. Then Ci denotes the number of successful

transmissions in the interval (Pi, Pj+1J, where this interval will be called the i-th cycle.

Let us define,

fI if d, = s

In () otherwise (11I.5)

H =E(Pi+1 - P} (111.6)

From the regenerative theorem (201, we conclude that if C = E[C 1)< -, then,
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N N C,
lim N- ' Is(s) = lim N- ' Ef y In(s)}=C - Ef s (HI.7)

N n=l1 N n=1 n=1

;where the first equality in (7) is w.p. 1. We also have that,

C = X H (111.8)

where ?X denotes the intensity of the Poisson input traffic. In addition, since

P(C1 = 1) > 0, the distribution of C I is aperiodic and there exists a random variable d_,

such that the sequence d,, n=l,2,... converges in distribution to d-. Then, d_

represents the steady state interdeparture distance induced by the algorithm, and its distri-

bution satisfies the equality,

C'P (d-. = s) = C - 1 E{ , In(s)) (HI.9)

n=1

C,
The finiteness and the computation of the quantities C and E( Y In(s)) in (9) are related

n=1

to the existence and computation of appropriate solutions to infinite-dimensionality

linear systems. The details of the analysis are presented in Appendix B. In Table 111.5, we

include the computed upper and lower bounds on the probability P(d,, = s). In Figure

111.2, we plot the lower bounds against s, for various Poisson input rates X.
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X _0. I X --0.4

1 0.1420 0.1427 0.4702 0.4728
2 0.0816 0.0832 0.2000 0.2048
3 0.0704 0.0739 0.0998 0.10806
4 0.0641 0.0696 0.0612 0.0787
5 0.0537 0.0603 0.0401 0.0603
6 0.0502 0.0591 0.0280 0.0397
7 0.0420 0.0503 0.0196 0.0264
8 0.0364 0.0452 0.0099 0.0173
9 0.0332 0.0431 0.0057 0.0094

10 0.0265 0.0393 0.0013 0.0062

Table 111.5

Upper and lower bounds on the interdeparture distribution for Poisson rates

X --0.1 and X =0.4

From Table I11.5 and Figure 111.2, we conclude the following:

(1) For small X values (X 5 0.1), the interdeparture distribution is close to the Bernoulli

distribution with parameter p = Xe-x. In particular, denoting by P A- P(d- = s), we

have Ps = p (1-p) s - 1, for s > 2. The probability P I however, is larger than the Bernoulli

parameter p. An intuitive explanation of the latter is as follows: For small X values, sin-

gle arrivals in two consecutive slots occur with probability p2 = (ke-1.)2 . X2. The pro-

bability of a collision slot is approximately equal to 2-1 X2 e-. = 2-' X2. Therefore,

under light traffic single arrivals in two consecutive slots contribute two thirds of P 1,

while the remaining one third is due to consecutive departures at the end of a collision

resolution interval.

(2) As the rate of the Poisson input traffic increases, the interdeparture distribution

induced by the algorithm deviates further from the Bernoulli distribution. In that case the

mass of the distribution accumulates at relatively small s values (see Table 111.5, for
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10
X=0.4, we have P 1 = 0.471 and I P,- 1.

s=1

Remark Our results show that it is generally wrong to conjecture Bernoulli interdeparture

distribution.

t

0.4

0.3

0.2=.

0.1

X0 I

- -- .\

1 2 3 4 6 7 8

Figure HI.2

Lower bounds on the interdeparture distribution.
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111.5 CONCLUSIONS

We presented a simple window random access algorithm for systems with binary,

collision versus noncollision, feedback. We analyzed the algorithm assuming the Pois-

son user model, and continuous feedback sensing. In addition to the throughput and

delay analyses, we studied the effect of feedback errors on the throughput of the algo-

rithm. We also evaluated the output traffic interdeparture distribution. Both the pro-

posed and the Capetanakis's algorithm attain the same throughput. In terms of induced

delays and feedback error insensitivity, the proposed algorithm is better than the

Capetanakis's dynamic algorithm. Furthermore, the proposed algorithm can be easily

modified to operate under limited feedback sensing, and its output traffic interdeparture

distribution can be analytically evaluated.
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CHAPTER IV

DELAY DISTRIBUTION ANALYSIS OF WINDOW RANDOM-ACCESS ALGORITHMS

IV.1 INTRODUCTION

Window Random-Access algorithms constitute an important class of Multiple-

Access algorithms; they are distributive and attain high throughputs and low delays by

controlling the number of simultaneously transmitting users. The throughput analysis of

algorithms in this class, is a relatively easy task. The delay analysis, however, presents

difficulties, due mainly to the variable window sizes and the complicated state space that

some of these algorithms create. These restrictions prohibit the application of results

from standard queueing theory in the delay analysis.

Many attempts for the delay analysis have been made. In [23], the class of algo-

rithms with constant window size was considered, and upper bounds on the expected

delays were developed. In [241, [201, methods for the computation of bounds on the

moments of the delays were presented. A method for the computation of delay distribu-

tion for constant window size algorithms appears in [251. The method in [25] relies on a

clever decomposition of the delay process, which allows the application of results from

standard queueing theory. The computation of the delay distribution for variable window

size algorithms, however, remains an open problem. One possible approach is to com-

pute bounds on the moments of the delays as in [24] or [201, which can then be used for
I

an approximate evaluation of the delay distribution. This approach, however, is not corn-
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In this chapter, we show that the methodology employed in [201, can be extended to

provide bounds on the distribution of the delays. The quantities of interest are related to

the solution of a denumerable system of linear equations. Methods for the computation

of the constant terms and the coefficients of the unknowns of the system are developed.

The methodology is applied to the delay distribution analysis of both the Capetanakis

Window-Access algorithm with binary feedback and the Part-and-try algorithm with

binary feedback. It can also be applied directly to other Window Random-Access algo-

rithms with different feedback. An interesting result of the analysis is that as the arrival

rate increases, the tails of the distribution become longer, but the median grows much

slower than the expected delay.

IV.2 MODEL SPECIFICATION

We consider a single slotted channel that is being accessed by a number of indepen-

dent packet transmitting users. The length of a packet is equal to the length of a slot, and

packet transmission may start only at the beginning of a slot. Simultaneous transmission

of more than one packets in the same slot, results in complete loss of the information

included in the involved packets. The latter event is referred to as a "collision" event. At

the end of each slot, all users receive a feedback that provides some information about

the channel activity in that slot. Common types of feedback are the binary C-NC (colli-

sion versus noncollision) feedback, and the ternary 0-1-C (empty versus success versus

collision) feedback. To resolve the collision, the users follow the rules of a Random-

Access algorithm. The algorithm is implemented by each user in a distributed fashion,

using only the available feedback. The cumulative packet generating process is assumed

to be Poisson with rate X packets per slot.
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We assume that a Window Random-Access algorithm is employed, whose basic

operating characteristics are the following (see Figure IV.1): Suppose that at the begin-

ning of slot v all packet that arrived before time t,<v have been successfuliy transmitted,

and there is no information concerning the packets that may have arrived in the interval

[tv), (i.e., the distribution of the interarrival times of the packets in [tv,v) is the same as

the one assumed originally). The beginning of such a slot v is called a Conflict Resolu-

tion Point (CRP). The time difference d, = v-t, is referred to as the lag at v. In slot v,

the users that generated packets in the interval [tv, t,+'T,), where , =min (d ,A), are

allowed to transmit; A is a parameter to be properly chosen for throughput maximization.

After a random number of slots and following the rules of the algorithm, another CRP,

v , is reached, with a corresponding tv > tv. All the packets that have been generated in

the interval [tv, tv), have been successfully transmitted in the interval [v,v). The inter-

vals [v,v ), [ti, tv+T), [tv, t-) are called conflict resolution interval, transmitted inter-

val, and resolved interval, respectively. The length of -t,, is called the window size at time

v. Clearly, the window size varies with time, and its maximum size is A. Note also, that

the length of the conflict resolution interval is one, if and only if there are at most one

packets in the transmitted interval.

Algorithms that operate as described above, are the Capetanakis Window Random-

Access algorithm [11] and the Part-and-Try algorithm, under either binary C-NC feed-

back [29], or, ternary 0-1-C feedback [11].

IV.3 STEADY STATE DELAY DISTRIBUTION ANALYSIS

Let packets be labeled 1,2,3,... according to the order of their arrival instants. The

delay D, experienced by the n-th packet is defined as the time difference between its
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steady state distribution of Dn, when it exists.

Let vi i_1 be the sequence of successive CRPs and let di be the lag at vi. The

sequence di ; i l is a Markov chain with state space F. For most of the existing Window

Random-Access algorithms, F is a denumerable subset of the interval [1,-). Let Tl=I,

d= 1, and define Ti+, as the first CRP after Ti, at which the length of the lag equals one.

From the description of the algorithm it can be seen that the induced delay process proba-

bilistically restarts itself at the beginning of each slot Ti, i=1,2,... The interval [Ti,Ti+1)

will be referred to as the i-th session. Note that the sessions have lengths that are i.i.d.

random variables.

Let Ri, i= 1,2,..., denote the number of packets successfully transmitted in the inter-

val (0,Ti]; (note that R i also represents the number of packets arrived during the interval

[0, Ti-1), since Ti is a CRP at which the lag is one). Then, Ci=Ri~l-Ri; i_>1, is the

number of packets successfully transmitted in the interval (Ti, Tij 1 ] - these are the pack-

ets that arrived during the interval [Ti-1, Ti+-l). The sequence Rj; i>1, is a renewal

process, since Ci, i~l, is a sequence of nonnegative i.i.d. random variables. Further-

more, the delay process Dn, n>__, is regenerative with respect to the renewal process

Ri, i2:1, with regeneration cycle C1.

Let

I{ if D,-S
Is)0 otherwise

From the regenerative theorem [201, we conclude that if C =E(C1) < -c, then

C,
E( 1,I(s))

i N1 N n=hm 7, ,,(s) = liram -E( ,,(s)) = nl(Vl
N--,N Vn =i N --, DN n=1 C
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distribution of Ct is aperiodic and there exists a proper random variable D-*, such that the

sequence Dn; n=1,2,... converges in distribution to D-*. D- represents the steady state

delay induced by the algorithm and its distribution satisfies the equality

C,
E ( I In (S))

PD- s =1 (IV.2)P (D,* s) -

C

From (2) we observe that the steady state distribution of the delays can be determined by

computing the quantities of the right hand side of the equality. In [20] it was shown that

the finiteness and the computation of C is related to the existence and the computation of

an appropriate solution to an infinite system of linear equations. In this section we will

Cl
show that the same is true for the quantity E( Z In(s).

n=1

The following definitions will be used in the sequel.

l :Length of a conflict resolution interval

Length of a resolved interval

Window size.

E(X /T) Expected value of the random variable X, given that the window size is

t.

p(x,r/T) The probability that the conflict resolution interval has length x and the

resolved interval has length r, given that the window size is ?.

p (x Pr) The probability that the conflict resolution interval has length x, given

that the window length is T.

hd Number of slots needed to reach a CRP with lag I given that we start
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kd(s) Number of successfully transmitted packets with delay less than s, in the

interval hd.

m,,d(s) Number of successfully transmitted packets with delay less than s during

a conflict resolution interval, given that the window size is t and the lag is

d.

nt(s) : Number of successfully transmitted packets with delay less than s, dur-

ing a conflict resolution interval, given that the window size is t and the

lag is t. That is, nc(s)=m,.(s).

Let us also define,

Kd(s) = E (kd(s))

M-.d(s) = E(m-, d(s))

Nt(s) = E (n.(s))

Hd= E(hd)

Note that by definition,

Ct
K 1 (s) = E( Y, (s))

n=1

Also,

C=XH

Therefore, the determination of KI(s) and HI, will permit the computation of the

steady-state distribution of the delays.

Consider the arrangement of Fig. IV. 1. The delay D of the successfully transmitted

packet 1, can be decomposed as follows:

D = 01+d-T+02

Therefore,
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D <_s iff 0 1+() 2 < s-d-t (IV.3)

But 01+02 is statistically identical to the delay that the successfully transmitted packet

experiences if the transmitted interval is T and the lag is T. The last observation shows

that mr.d(S) is identically distributed with n-(s-d+). Observe now that

=) m'Cd(s) if dv = 1

k(s) {m.d(s)+k'(s) if d, -=d 1 (IV.4)

and that

d,'=d-8+1, 't= d , if d,<A
A if d,>A

From (4) and (5) we conclude that

Kd(s)=Mdd(s)+XKd-.r+x(S)P(x,r/d) if 1 d<A, de-F
r,x (V.6a)

Kd(S) = MA.d(S) + ,Kd-r+x(S)p(x,r/A) if d>A, dEF (IV.6b)
rx

Since mI.d(S) is identically distributed with n,(s-d+,t), equations (6a) and (6b) become,

Kd(s) =Nd(s) + XKdr+x(S)P(x,rld) if ld<__A, dEF
r.x (lV.7a)

Kd(s)=NA(s-d+A)+K-,+x(s)p(x,rIA) if d>A, de F (IV.7b)
rx

Equations (7a), (7b) comprise a denumerable system of linear equations. Of interest to us

is the element K 1 (s) of a particular solution of this system. The methodology developed

in [201 can be used for the study of system (7). Note that the coefficients of the

unknowns are independent of s. This observation represents a computational advantage

when the solution to (7) is approximated by the solution of appropriate finite linear sys-

tem of equations, [201. In this case, the approximate solution can be represented in the

form,
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be computed once, and then used for the computation of the approximate solution for

various values of s.

We now proceed in the development of an initial upper bound on the solution of

system (7). Following the methodology in [201, such a bound will be the sequence

K°(s) = y(s)d+C.,(s), if yu(s), (s), can be determined so that the following inequali-

ties are satisfied

K')(s) >- Nd(s) + - 0 ,x(s)p (x,r/d) = K1(s) if 1.5d<A, d(F,x 
(IV.8a)

K°(s) >NA(s-d+A) + XK°-r+x(S)p(x,r/A) = K'(s) ifd>A, dEF (IV.8b)
r,x

Substituting K0 (s) in the right hand side of inequalities (8), it can be seen that if dE F,

Kb(s) = Kod(s) + Nd(s) + y.(s)(E (l1d) - E (81d) - (l+Xd)e - x ) - C(s)(l+Xd)e

if 1!5 d5 A (IV.9a)

Kd(s) = K°(s) + N A (s -d+A) - y,(s)(E(8iA)-E (I/A)) if d>A (IV.9b)

Observe now that NA(S) is an increasing function of s. Therefore, from (9b) we conclude

that,

Kl(s) < K°(s) + NA(s) - y,,(s)(E (8/A)-E(I/A)) if d>A (IV. 10)

From (10) we conclude that if E(I/A) < E (5/A), the condition for stability of the system,

inequalities (9b) are satisfied if

NA(s)N(s)= (IV.11)
E (5/A)-E (I/A)

With this value of ye(s), it can be seen that inequalities (9a) are satisfied if

?' I \ t" -- ' .... fz . .
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14(d) = Nd(s) + y. (s)[E (lid) - E (51d) - (l+Xd)e 4 ] (IV.13)
(I+Xd)e -Ad

From the above discussion we conclude that the solution to system (7) satisfies the ine-

qualities

Kd(s)<yu(s)d+ W(s), deF (IV.14a)

where y,,(s), C,(s), are given by equations (11), (12) respectively. The uniqueness of the

solution is guaranteed by the same techniques as in [20]. If we use a similar method for

the development of a lower bound, we find that

y(s)d + 1(s) = Kd(s), dE F (IV. 14b)

where

y1(s)=O and 1(s)= inf {(Nd(s)/((1+Xd)e-X)}

Bounds on H 1 are given in [20], formulas (18), (19).

As is explained in [201, the bounds (14) can be used to further improve the bounds

on K I(s). To proceed further, however, the computation of the quantities

E (I1d), E (51d), p (x,r/d), and Nd(s) is necessary. In section 4, we present a method for

the computation of Nd(s) for the Capetanakis dynamic algorithm, and then proceed in the

computation of tight upper and lower bounds on the quantities of interest. In section 5,

we present a method for the computation of the quantities Nd(s) and p(x,r 1d) for the

Part-and-Try algorithm, and then we develop bounds on the distribution of the delays.

Due to the complicated state space of the latter algorithm, the development of tight

bounds for high input rates becomes computationally cumbersome.
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IV.4 THE CAPETANAKIS ALGORITHM WITH C-NC FEEDBACK

A complete description of the algorithmic rules can be found in [11]. In this algo-

rithm, the resolved interval is always equal to the window size i.e., r 8. This results in

a significant simplification of the state space F, when the maximum window size A is a

rational number. The restriction of A to the rational numbers facilitates the development

of tight bounds for the delay distribution and does not represent any disadvantage in

practice. Moreover, if m packets are involved in a conflict, the conflict resolution process

depends only on m and not on the window length or the generation time of each of the

packets. The last property facilitates the development of efficient methods for the com-

putation of the quantities of interest.

Since T a 6, we have that, E(8/d) = d and

p (x,r/1d) =p (x/d) if r=dp (otherwise

Formulas for the computation of E (1/d), p (x/d), can be developed by following the rea-

soning in [11]. In the next section we develop a method by which the quantities Nd(s)

can be computed.

IV.4.1 The Computation of Nd(s).

Let M be the number of packets in the window d (see Fig. IV.2). Then,

Nd(s) = E(nd(s) = E(E(n(S) / M)) = j E(nd(s) M = m)e - Xd (Xd)" (IV 15)
m=1 m

Let

= I if the delay of the i -th packet in d is at most sJ.m(s)- otherwise (IV. 16)
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The "i-th packet" in (16), is the i-th packet in a random enumeration of the m packets

(randomly chosen packet). Then

m

nd(S) = J"Jim(S) (IV. 17)
i=1

Given M, the generation time of each of the M packets is uniformly distributed in the

window d and independent of the generation time of the rest of the packets. From this

observation and the definition in (16) we conclude that the random variables

Ji.m(S), 1 i-m, are identically distributed (although not independent). Therefore, from

(17) we conclude that

E (nd(s) / M = m) = mE (J 1.m(s) / M = m) (IV.18)

Let 01, (02), be the delay of the first randomly chosen packet before (after) the initializa-

tion of the collision resolution process i.e. until (after) time v (Fig. IV.2). Since 01 is uni-

formly distributed in [0, d), we have that

d

E(J.m(s) / M = m)=d . E(Jm(s) / M =m, 81 = 8) dO (IV.19)
0

Since the conflict resolution process is independent of the packet generation time in a

window, we conclude that given m, the random variables 01, 02, are independent. There-

fore.

E(JI(s)/M =m, 06 =) =p(01+0 2 <s /M =m, 01 = 0) =p(0 2 <s--O-M =m) (IV.20)

and

d
E(Jl.,,(s) / M = m) f P(02 <- s-0 / M = m) dO (IV.21)

0

Observe now, that 02 takes only positive integer values. Let

tqhP02= q / M = m ) ; q=1,2,3,...
then,
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p(0 2 - s-0/M=m)= q (IV.22)
q=1

where, [a] denotes the integer prt. of a. Sub.titnting (22) in (21), we conclude that

E (Jl,m(s)/M=m)= P() dO (IV.23)
0 q=1

Let e=d-s+[s]. Then, since p(m) is independent of 0, (23) can be written as follows:

1s] [$]-I ( si-[e ] [sJ-[el1-I
EJi.. (s)/M =4n)== ((s-[s]1 ) P(-) + [SI- pt(-,+...+ Se IP (m) + (e -[e]1) Ise - p(M))

d q=l q=1 q=l q=1

From (15), (18) and (24), we observe that for the computation of Nd(s), only the quanti-

ties pq(m) are needed. In Appendix C, we provide recursive formulas for the computation

of the quantities p(m). It is worth noticing that formulas (15), (18) and (24), are valid for

any window Random-Access algorithm that has the properties described in the first para-

graph of section 3.

IV.4.2 Development of bounds on K 1 (s), H1

For the development of bounds on the delays we chose A=2.5 As a result, the state

space F becomes,

F=(1, 1.5, 2., 2.5,....)

For the algorithm considered in this section, the maximum throughput is achieved for

A=2.67 [11]. The reduction in throughput due to the choice A=2.5 is not significant (less

than. 1%).

Since 8- r, equations (7a), (7b), become:

Kd(s) =Nd(s) + ,Kx(s)p(x/d) if d=l, 1.5, 2, 2.5 (IV.25a)
X

...1

Kd(s) = NA(s-d+A) + YKd-A+ x (S)p (x /A) if d=3, 3.5, 4,... (IV. 2 5b)
x

For the development of bounds on K1 (s) we followed the method of truncation of the
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infinite system (25), see also [20]. Specifically, in system (25), we replaced the

unknowns Kd(s), for d>40 with the upper bounds in (14a). The substitution results in a

finite system of equations whose solution is an upper bound to the solution of (25) for

d=l, 1.5, 2,...,40. For the development of lower bounds, we replaced the unknowns

Kd(s), d>40 with the lower bound in (14b). The same methodology is employed for the

development of bounds on HI. The resulting upper and lower bounds on the distribution

of the delays differ by .01 in the worst case. In Figure IV.3, we provide the distribution

of the delays for various values of the arrival rate. An important observation is that as the

arrival rate increases, the tails of the distribution become longer, but the median grows

much slower than the expected delays.

IV.5 THE PART-AND-TRY ALGORITHM WITH C-NC FEEDBACK

A detailed description of the algorithm can be found in [29]. The algorithm has

throughput .45, and its basic difference from the Part-and-Try algorithm with ternary

feedback in [11] is that if a collision is followed by an empty slot, the packets that are

involved in the collision retransmit in the next slot (no splitting takes place). The tech-

niques used in this section, can be easily applied to the analysis of the algorithm under

ternary feedback.

IV.5.1 The computation of NA(s).

Let M be the number of packets in the window d (see Fig IV.4). As in section 4.1,

formula (15) holds. Since not all the packets in a window are successfully transmitted,

however, we need to modify the definition of Ji.m(s) in (16). Let
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1 if the i-th randomly chosen packet in d is sucessfully
Ji.m(s) = transmitted and its delay is at most s. (IV.26)

0 otherwise

then, as in (18),

E (nd(s) / M=m) = mE (Jim(s) / M=m) (IV.27)

and

E (Ji(s) / M=m) = d J (J, re(s) / M=m, 01---O)dO (IV.28)

Again, 02 takes integer values. However, 01 and 02 are not independent. To proceed

further, we define the events

Ai,,n(s)={ the i-th randomly chosen packet is successfully transmitted and 02<s.}

ai,m(q) = [the i-th randomly chosen packet is successfully transmitted and 02=q, q=1,2,...)

Since 0 takes only integer values, we have that

Is)
Aim(s) = Uajm(q) (IV.29)

q=1

From (28) and (29) we conclude that

d

E(JI.m(s)/M=m)= fP(Airn(S-)l/M=m, 01=e)dO (IV.30)
0

1d [3-61
-Y p(ai,m(q) / M=m, 01--O)dO
o q=l

Observe now that p(alm n(q) / M=m, 01=O) depends on 0 through the ratio 0=O0d. Let us

define

f:(n m,.) =p(ai.,,(q)/M=m, 01=Od) ; 0- E [0,1) (IV.31)
d

then, the following equations hold:

f 1 (O,m,)=O, for m=1,2..., and O [0, 1) (IV.32a)
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f 1 (l,m, 0) = 0, for m=2,3 ,.., and 4e [0, 1) (IV.32b)

f q ,) Ii = E[0, 1) (rv.32c}r1ifq=1
f1 (q, 1,€)0 otherwise [

Y f,(q-l,j+l,21 _l) ml 2(-(,--1))

f, (q,m, 4) (IV.32d)

Formulas (32a), (32b), (32c), are clear. Let us explain formula (32d).

Assume that .5 4,< 1. Then, the packet under consideration (packet 1 in Figure IV.4),

lies in the left hand half (l.h.h.) of the window. Let 02 be the delay of packet 1, after the

first collision. Then,

02 = 0 2+1 (IV.33)

The location of packet 1 in the l.h.h. of the window, is,

01 =0 1 -d/2 (IV.34)

Therefore, the new ratio becomes

, =- = 2,---1 (IV.35)
d/2

Let Gj.-t be the set

Gjm-i=(j of the m-I packets (other than packet I), are located in the l.h.h. of the window.)

Note that p(Gj.r-,)= m 1 2-('-t). From (33), (34) and (35), we derive formula (32d)

for .5 <0! 1 by conditioning on Gj,,n-. If 0<<.5, packet 1 is located in the right hand

half (r.h.h.) of the window. In this case, -'e note that if in the l.h.h. of the window there

are more than one packets, then packet I is not traihsmitted during the collision resolution

process. By conditioning again on the G,.mi, and taking into account the last observa-
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Illustration of delay's decomposition for the Part-and-Try algorithm.



66

From equations (32) we conclude by induction the following property for the func-

tion f1 (q,m, 0):

-Property 1. For fixed q and m, the function fI (q,m, 0) is simple (i.e., it takes a finite

number of values), and left continuous. The jumps of the function occur at the points

0, 2-(q-1) . k2 1-2- )

Taking into account Property 1, we can compute E (Jlm(s)), using formula (30).

IV.5.2 The Computation of p (x, r1d).

The method of conditioning on the number of packets in a window (applied in sec-

tions 4.1 and 5.1), does not seem to lead to easily computable recursive formulas. In this

section, we present an alternative methodology that results in simple recursive formulas

for the computation of p(x,r/d), and provides insight into the structure of these probabili-

ties.

Observe first that p(x,r/d) depends on r through the ratio s--r/d. Let

f 2 (x,s,d) = p(1=x, 6=sd, M>2 / d)

Conditioning on the events {M--O}, {M=I} and (M>_2}, and observing that if M=0,1 then

1=1 and &=d, we conclude that

p (x,r 1d) = 8K(x-1)SK((S ld)-I )e-" (l+Xd) + f 2 (x,s,d) (IV.36)

where

8K(Y) ={0 otherwise

The function f 2(x,s,d) satisfies the following recursive formulas
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[ f 2(x-1,2s, d/2) 0<_s<.5

f(xsd) =1 f 2 (x-2,2s-1,d2)e-"".?(2 +%d 2) .5<s_1 (IV.37b)

t + 8K(X-3)8tK(s-1)e-(' d)(Xd2)2

We derive equation (37a) for 0 _<.5 The case .5<s:51 can be derived by a similar reason-

ing. Let M be the number of packets in the l.h.h of the window. Let l be the number of

slots during a collision resolution process after the first collision. Then,

p(I=x, 6-.sd, M>2 / d) =p(I+l=x, 8=sd, M22, M'_2 / d) + p(=x, &-sd, M22, M'51 / d)

But if M'_<I, then s>.5. Therefore p (l=x, &-sd, M>2, M'!51 d) = 0 if 0.<s_<.5. It

remains to observe that

p ('+l=x, 8-sd, M>2, M'>_2 / d) = p (1'=x-1, &-=2(sd/2), M'>2 / d)

and that if M >_2, the collision resolution process after the first collision is statistically

identical to a collision resolution process that started with a window of size d/2.

From (37a), (37b) we conclude by induction that the function f 2 (x,s,d) has the fol-

lowing property:

Property 2 For fixed x2!3, and for any d, s takes a finite number r, of values. The

sequence r, satisfies the following recursions: r3=r4=1, r,=r,-I+r,_2; x>_5. Let Ax be

the set of values of s for given x. Then, 1

A3=[1}, A4=(1/2}, A, = (.5A- 1 )t.j(.5A.- 2+.5), x_ 5

The values of f 2 (x,s,d) for various x and s, can be computed from (37b). The probabili-

ties p(x,r/d), are easily computed from (36).
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IV.5.3. The Development of bounds on K 1 (s),H1.

The state space F for the Part-and-Try algorithm is a dense subset of [1, cc). This

property complicates the development of finite systems of linear equations whose solu-

tion will provide upper or lower bounds to the quantities K1 (s), H 1 . Taking advantage of

the btructure of the probabilities p(x,r/d) (see section 5.2), however, we can proceed as

follows: Let B be a finite subset ofF, that includes the state d=1. We develop the follow-

ing finite system of linear equations:

Yd = Nd(s) + F, (y.(s)(d-r+x)+C.(s))p(x,r/d)+ F Y..+p(x,r/d)
(d-r+x)eB' (d -r+z)e B

if 1!5d:5 A, dB (IV.38a)

Yd = NA(s-d+A) + . (y.(s)(d-r+x) + Z(s))p(x,r/d) + X Yd ,,p(xr/A)
(d -r+%),E (d-r+z)EB

if d > A, dEB (IV.38b)

y,(s) and 4,(s) are determined from (11), (12). Due to property 2 of section 4.2, it is sim-

ple to find for a given dEB, the values of x and r such that (d-r+x) r B. The summation

over the infinite set BC, can be computed in terms of E (id), E (81d), y,(s), cu(s), and the

probabilities p (x,r/d); (d-r+x) E B. The solution Yd; de B of system (38), is an upper

bound to the solution Kd(s); dEB of system (7), see also [20]. Since IEB, we can deter-

mine a bound on KI(s). Similarly, lower bounds on KI(s), and upper and lower bounds

on H1  can be developed. For the computations we used the set

B (1, 1.125,..., l+(k/8),..., 9). The resulting bounds on the delay distribution are

presented in Figure IV.5 for X= .1, .2, .3. For higher arrival rates, the bounds are not

tight and although they can be improved by enlarging the set B, the computations

become cumbersome.
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IV.6 CONCLUSIONS

We developed a method for the computation of bounds on the delay distribution of

Window Random-Access algorithms. The method has been applied to the delay distribu-

tion analysis of the Capetanakis Window Random-Access algorithm and the Part-and-

Try algorithm both under binary C-NC feedback. The bounds developed for the

Capetanakis algorithm, are tight for all arrival rates within the stability region of the

algorithm. For the Part-and-Try algorithm, however, the bounds are satisfactory for YXla-

tively low arrival rates. The computational difficulty in obtaining tight bounds for the

latter algorithm, is due to its complicated state space. The techniques can be easily

applied to other Window Random-Access algorithms whose operating characteristics are

as described in Section 2.
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CHAPTER V

RANDOM ACCESS ALGORJTHMS FOR TWO-CLUSTER

PACKET RADIO SYSTEMS

V.1 INTRODUCTION

In this chapter we consider a two-cluster packct radio nctwork. In each cluster a sin-

gle common channel is used for packet transmissions by the users in it. We assume that

the users are not necessarily static. Consequently, limited-sensing random access algo-

rithms are the most appropriate since they require that a user observes the feedback chan-

nel from the time he generates a packet to the time this packet is successfully transmitted.

In a multi-cluster packet radio network neighboring clusters may overlap. The users

located in the overlapping regions are then exposed to transmissions and feedbacks from

more than one clusters. The latter phenomenon can be exploited to improve the delays

for the users located in the overlapping regions, (see [36] for a similar problem in mobile

telephone systems). Consider for example clusters I and 2, and call the users located in

their overlapping region, marginal users, let us also call the users in cluster i, i = 1 .2,

which are not located in the overlapping region, local users. The local users in each clus-

ter transmit their packets over the common channel dedicated to that cluster. To resolve

possible collisions they employ a random access algorithm, called RAAi (i stands for

cluster i). Due to the double exposure the marginal users have a choice: they can join

RAA 1 or RAA2 for the transmission of their packets. This choice can be implemented in

f
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a static or dynamic way. The static implementation consists of a priori assigned proba-

bilities. Upon generation of a new packet, each marginal user decides iv juin RAAi with

probability pi, where Pt + P2 = 1, and remains there until his packet is successfully

transmitted. The policy described above is simple. However, it requires that the marginal

users know the a priori assigned probabilities at all times. The latter is not considered a

serious disadvantage, unless the a priori assignment changes with time due to changes in

system dynamics. This is the case of multi-cluster systems with mobile users, where

users enter and leave the system frecly. In such a dynamically changing topology it is

hard to update all the marginal users regarding the optimal values of the probabilities pi.

Consequently a dynamic implementation should be adopted. Such an implementation

may in addition give a delay advantage to the marginal users. The latter may be desirable

in systems where the marginal users play a special role, i.e. they transmit priority or con-

trol messages. In this chapter, we consider two overlapping clusters, each employing the

limited sensing RAA presented in chapter III. Next, we propose a dynamic protocol via

which the marginal users decide which cluster to join. The organization of this chapter is

as follows: In section V.2 we present the system model. In section V.3 we describe the

protocol used by the marginal users. In sections V.4 and V.5 we present the stability

analysis. Section V.6 contains our conclusions.

V.2 SYSTEM MODEL

Consider a two-cluster packet-radio system. We assume that in each of the two

clusters, the synchronous limited sensing random access algorithm presented in chapter

III is employed. Time is divided into slots of length equal to the packet duration, and the

starting instants of the slots are identical in both clusters. By the end of each slot all the
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users in each cluster receive feedback information that informs them about the transmis-

sion activity in the cluster. This feedback is either ternary, (Collision (C) versus Success

(S) versus Empty (E)), or binary, (Collision (C) versus Non-Collision (NC)). In each

cluster, a local user is required to monitor the feedback channel that corresponds to its

cluster. We assume negligible propagation delays and error-free forward and feedback

channels.

Each marginal user is able to monitor both the feedback channels. At the time when

a marginal user generates a new packet, he starts monitoring the feedback channels from

both clusters until he decides to join the operations of one of the two RAAs, for the

transmission of his packet. Upon this decision, he maintains the continuous monitoring

of the feedback channel that corresponds to the RAA he chose, until his packet is suc-

cessfully transmitted.

The mobility of the users is assumed low so that, each user remains within the same

geographical region (local or marginal) from the time he generates a packet to the time

that this packet is successfully transmitted. Assuming that each of the RAAs operates

away from the saturation point (throughput), then with high probability this time period

is relatively small.

It is assumed that the local traffic generated in cluster i, i=l, 2, is Poisson distri-

buted with intensity X, i=1,2, and that the traffic generated by the marginal users is also

Poisson distributed with intensity k3.

V.3 THE ALGORITHM

We assume that the two clusters employ the same random access algorithm. We

decided to adopt the algorithm presented in Chapter I1 since it has simple operational
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characteristics and is very insensitive to feedback channel errors. Recall that for the algo-

rithm in Chapter M, a user with a new packet waits for two consecutive noncollision

(NC) slots before he transmits his packet for the first time.

Upon generation of a new packet, a marginal user monitors both the feedback chan-

nels until the first time that he is allowed to transmit his packet over one of the forward

channels, (i.e., occurrence of two consecutive NC slots in the corresponding feedback

channel. If the user is allowed to transmit his packet over both the forward channels at

the same time, he then selects one of them with probability 0.5). If the received feedback

is NC then, the packet has been successfully transmitted and the user stops observing

both the feedback channels. However, if the received feedback is C then, the user only

observes the feedback channel that corresponds to the forward channel over which he

made his first transmission attempt and follows the steps of the RAA. Upon the success-

ful transmission of his packet the user stops monitoring the aforementioned feedback

channel.

Upon generation of a new packet, a local user monitors the feedback channel that

corresponds to its cluster until the successful transmission of his packet. From the

description of the first time transmission rule for both the local and marginal users, it is

clear that the marginal users have an advantage over the local. In particular, their waiting

delay (time interval from the packet's generation time until the first transmission

attempt) is smaller than (sometimes equal to) that of the local users. Consequently, their

total delays are smaller than those for the local users.
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V.4 ALGORITHMIC ANALYSIS

For notational convenience we will refer to the local users in cluster 1, the local

users in cluster 2, and the marginal users, as subsystem 1, subsystem 2, and subsystem 3,

respectively. We assume that the three subsystem traffics are generated by independent

processes, and that the number of packet arrivals per slot in subsystem j, j=1,2,3, is Pois-

son distributed with intensity ) 1. From the throughput analysis of the adopted RAA (see

Chapter 111), we know that the algorithm attains a maximum throughput 0.429, and that

the optimal window size is A = 2.33. Therefore, the following conditions are necessary

for stability:

X1 <0.429, and X2 <0.429, and X1 + ?2 + X3 <2 (0.429) =0.858 (V.1)

The necessary conditions in (V.1) determine a (X1, j=1.2,3) hyperplane, which con-

tains the (X1, j=1,2,31 region that determines the system throughput. Bounds on the

X ., j=1,2,3) space which provides the system throughput, will be obtained via the sta-

bility analysis in Section V.5 below.

V.5 SYSTEM STABILITY

Assume that the algorithms in both clusters start operating at time zero. Consider

the sequence in time of the collision resolution intervals (CRIs), induced by the two

RAAs. We define the sequence (T , ),,o as follows: (1) Tn corresponds to the starting

slot of some CRI, ( note that at Tn, two CRIs may simultaneously begin; one for each of

the two RAAs). (2) T0 =2, and at To two CRIs begin; one for each RAA.

Let (Tn(' })0o be the subsequence of the sequence (T, 1,>O, which consists of those

time instants when two CRIs begin simultaneously. Clearly, Tg)=T0=2. Let DO),

j=1,2,3, denote the total length of the unresolved arrival intervals in subsystem j, at the
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time instant T(' ) . D.) is then called "the lag of subsystem j at time T().') From the

operations of the algorithm we conclude that: (1) DO)>2 and that the possible values of
D j =1,2 are countably many. (2) D&s=2, j=1,2,3. (3) At time T ( ) , the RAA in clus-

DO), i 12aecutbymn.()D•

ter k, k=1,2, examines two arrival intervals: one from subsystem k which has length

mn(D,,), A) and contains arrivals generated by a Poisson process with intensity k

arrivals per slot, and one from subsystem 3 which has length min (D( , A) and contains

arrivals generated by a Poisson process with intensity 0.5 X3 arrivals per slot. (4) The tri-

ple (DO), j=1,2,3) describes the state of the system at time T(' ) , and the sequence

{Sa}r_>o A {DrQs j=1,2,3}n_>0 is a three-dimensional irreducible and aperiodic Markov

Chain.

The stability of the system is determined by the ergodicity of the three-dimensional

Markov Chain {Sjn}JO. In addition, at time Tn(') , the backlogs of each of the three sub-

systems are represented by the three lags, DO) , j=1,2,3. Given DO) =d6) , j=1,2,3, we

3
define the expected system backlog at time Tn ) to be the " jd ) , where V(dn)

j=t
3

V((dO)}11<j<3) X X X dO) is a Lyapunov function of the three subsystem lags {dnO) I_<j<3.
j=1

Let C denote the state space of the Markov Chain (Sn ,O, and define the operator

AV(d) = AV({d j) Ij<3), called a generalized drift, as follows:

AV(d) = AV({d() } ) = El V({ ) i'ji3)_ - V({NS) } <3)I Dn-d ),j=l,2,3 }

3 3-E ( YXjD ,,s IDO)=d0O),j=l,2,3) - XjXdU); d={dO%!}5<j , C (V.2)
j=l j=1

Since we are interested in determining the system's throughput we assume that the sys-

tem operates at the saturation point therefore, all the lags are assumed to be sufficiently

long, so that in the time interval [ T(+ 1 ], the examined interval is always of length A.

Consequently the number of packets that are successfully transmitted during the first CRI
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that belongs to RAAi, i = 1,2 in the above interval, is Poisson distributed with parame-

ter ( Xi + 0.5 X3 ) A. Furthermore, the number of packets that are successfully transmit-

ted during every subsequent CRI that belong to RAAi, i = 1,2 in the above interval, is

also Poisson distributed with parameter ( X + X3 ) A. Under the above conditions and

given the subsystem Poisson rates (. }1j53, let us define:

EX.{/ I u): Given that the length of the interval to be examined

equals to u and, that the Poisson input rate equals X,

the expected number of slots needed for the suc-

cessful transmission of all the packet arrivals within

the examined interval.

i=1,2 ; Ni({X? ),A): The number of CRIs in [Tn(s), T(sJ that belong to

RAAi, i = 1,2.

AV(da, {Xj)): The generalized drift in (V.2). We next define a

generalized drift for the RAA in the i-th cluster:

i=1, 2; A(') V(dA, {?.j})A E),,+X12 III A}-A+

+ [EiN(Xj),A)}-1] [E,+ 3 {1 I-A] (V.3)

Then, from (V.2) we derive the following expression:

X3 A3 (21

23 [E IN, (Xj ),A)) + E (N2 I Xj ), A)) -21  (V.4)

where,

EL, + , 12 {l A)+[EIN 1 ( j ),A))-l]Ex,.x, 1 1A)=

EX+X1 2 {/IA) + [E{N 2((j),A))-lIE +x,{/IA) (V.5)
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We now state a Lemma whose proof is similar to the one presented in 137].

Lemma I

(i) Let there exist some E>, such that the two conditions below are satisfied:

A()V {A Xj ])

A(2)V(dA, {)Xj })<E(V.6)

Then, the Markov chain {Sj }>0 is ergodic at the Poisson rates {X) 1!5j53

(ii) Let at least one of the two generalized drifts, A(')V(dA, {Lj }),i=1,2, be nonnega-

tive. Then, the Markov Chain (Sn),n o is nonergodic at the Poisson rates

{Xj 1:5j53 •

The conditions in (V.6) define lower bounds on the { Xj } regions for which the Mar-

kov chain ( Sn }4 is ergodic.

In Appendix D, we describe the methodology used in the evaluation of the max-

imum IXj) values for which the chain (Sfl)>o is ergodic. In Figure V.1, we plot the

boundaries of the (XI, X2) stable regions, parametrized by various X3 values. Those

boundaries are symmetric around the 450 straight line. In Figure V.2, we plot X. against

X = X = X2, (symmetrically-loaded system).

From Figures V.1 and V.2, we observe that the maximum value of the sum

X1+X2+)- 3 is always strictly less than 0.858 (i.e., strictly less than twice the throughput of

each local RAA). This is so because under the conditions described above the RAAi,

i = 1,2, operates with an input rate equal to ( . + X3 ) A during most of the time. Conse-

quently, if the rate of the local traffic is close to the algorithmic throughput for one of the

RAAs in the system, the introduction of marginal users results in instability.
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V.6 CONCLUSIONS

In this chapter, we performed stability analysis for a two-cluster packet radio net-

work. Each cluster contains local and marginal users. In each cluster a single common

channel is available for packet transmission. Packets that are generated by the local users

in a cluster, can be only transmitted over the forward channel that corresponds to that

cluster. In contrast, packets that are generated by the marginal users can be transmitted

over either one of the two available forward channels. We propose a protocol according

to which the marginal users are able to dynamically select the forward channel over

which they will eventually transmit their packet. According to the protocol rules, each

marginal user with a packet for transmission is required to observe both the feedback

channels from the packet's generation time, in order to decide over which channel he will

transmit his packet. No a priori knowledge of the input traffic rates, or the subsystem's

states is required.
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APPENDIX A

A.1 Recursions

Towards the computation of E{Od} and P(I Iu, d), let us denote by E[. Ik,k 2,B)

the expected value, given that ki packets have counter value equal to i, i=1,2, and that the

maximum length of the collision resolution interval is B. Let P ( Ik1 ,k 2,B) denotes con-

ditional probability, given ki, i=O, 1, and B as above. Then, for ,.d denoting either one

of the quantities lu~d, Zu~d, and n., we clearly have:

E( ,,) = Y E{(C., Ik, O,T-d}e -- u-k --- k I

P (I Iu, d) P (I I k, O,T-d)e - ( u)

It is also easy to prove that,

E (Vu,d) = 2-1 u E {n.,}

Note that suP E( ud Ik, O,T-d} < o-. Therefore, the computation of a finite number

of terms is sufficient for developing tight bounds on the quantities of interest. Also, note

that given k I, k2 , B, the operation of the algorithm is independent of u and d. Let us

denote:

Lk,.k,,B = E [l.d/k 1,k2 ,B}, Nk.t 2,B = Effnu.dik I,k 2,B), Zk,, kB = Ezu.d/k 1,k2 ,B}

From the operation of the algorithm we derive the following recursions:
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Lkl,k 2 ,B I + Lk,.o.B-1 '05 k 1 1

I+ +Li 2+k-iB-1 * P wjk i I 2-k', kl>1, kj1 i 0

SNk 20B-.1, k 1=-0
Nkl,k2,B Nk 2 ,0.B-1 + 1, k1=1

Ni~k~k2'.B1, .P[ki] 2-k1 , k I> 1, k I i 0

l+Nk.oB-1 +ZkOB-1, k1=1

Zk,.k 2,B Nko.1 +Zk2 O0B-1, kj=O

P(I lkjk2,B)= Py-11Ik 2 ,0,B -1), kl1 =Oor 1

The initial conditions in the above recursions are the following:

LoAoB =L1 ,0 ,8 =L2,0 .1 =L0 , 1 = 1, B 1l

L 2,0 ,2 = LO1B = 2, B 2

N0,0,8 = N, 1, 1 = N 2,0 1 = 0, B l

N1,0, = 1,B: l, N2,0,2 =0.5, B 2

No, .B=1, B>2

ZI1 .1 =Z,. = 1, B 1I

Zklk,, =0, k1 !2, k2 0O, Z 1 1 8 B= 3, B !2

Zk.kl 2 = 2k 12-k,, kj1 2

P(21 I ,0,B) = P(I I l,0B), B 1I, I1 2

P(I Ik, 0,B) =0, B 2, k !2
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P(1I1,O,B)=P(1 Ik,O,1)=P(21k,O,2)= 1, B>I, k>2

P(21kl,k 2 ,2)= 1, k>2

A.2 Computations in the Absence of Bounds on Delays

Let T=o, and let us then define:

L,,tk-n: The expected number of slots needed by the algorithm, for the successful

transmission of k packets, given that n of the packets have counter values equal to one,

and k-n of the packets have counter values equal to two.

From the operation of the algorithm, we then obtain:

1n,- + 7- 11j 2-L~- (A. La)
i

i=o

Lo~oL,O =  1, Lo~j = I+Lj, 0; i_>l (A. Lb)

It can be shown by induction that L,.t-, has the following form:

Ln.k-n = A( ) Lk0 +An Lk-I,o +A ; k>2, 2.<n<_.k (A.2)

where A('), i= 1,2,3 are independent of k and can be computed recursively as fol-

lows:

A(1)=[1-2-n -1l 2-{n +n1A~2)[i}, n>3 (A.3.a)
i=2

nn n A , n>3 (A.3.b)
i=2

A(3)=[1-2 - n  l+2-n(n+l)+2- n n- A (3)  ,n>3 (A.3.c)

L ( =2) 11 j

AS')=I/3, A 2) = 2/3, A? ) = 7/3 (A.3.d)
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For n=k, expression (A.2) gives:

A4) A )
Lk = L,0 = AV) Lk-1.o + AV) (A.4)

+- I-Ak'(A4

where it can be found by induction, that:

A ) 5 k+1 , k>1 (A.5)

A41) 5 - , k !1
3

< I , k>11-A

From (A.4) and (A.5), we finally find:

0_5Lk=Lk0 <  k2 + - k - 2 , k l (A.6)
4 4

The bounds in (A.6) are used in the derivation of tight upper and lower bounds on

the expected value in (A.7) below, where X is the intensity of the input Poisson traffic.

E lu.d} = , Lke - x  (A.7)
k --o k!

In the same way, we can develop recursive formulas and bounds for the quantities

associated with the cumulative delays of the packets during a CRI. These quantities can

then be used for the computation of the delays in the unconstrained case, by following

the methodology presented in [20].
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APPENDIX B

t

B.1. Stability Analysis

We present the stability analysis in the case feedback errors may occur. By setting

=c = 0 in our results, we get the corresponding quantities in the error free case.

The stability region of the algorithm is provided by inequality (111.1), where the

expected value, is given by expression (111.2). We start with the computation of the

expected values Lk ; k > 0 in (If1.2a).

Computation of Lt

We define:

Gnk-,: The expected number of slots needed by the algorithm, for the successful

transmission of k packets, given that n of those packets have counter values equal to

one, and k-n of the packets have counter values equal to two.

Notice that Lk = Gk 0 , for k_ 2, while Lk # Gk, o, for k < 2. We first show how to

compute Lo and L 1.

Computation of Ln:

From the operation of the algorithm we have

I ; w.p. (l-e)
L0= I+Go.;w.p" (B. 1.1)

where
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1 +Lo ; w.p. (1-e)

Go,o = 1 + Go.o ; w.p. E (B..2)

From (B. 1.1) and (B. 1.2) we find that

1
Lo-( (B. 1.3)

Computation of L1

We find that L 1 satisfies the following

F1 ; w.p. (1-6)

L, = I+G1. 0 ; w.p. 0.56 (B.1.4)

1+Go,1 ; w.p. 0.58

where G 1.0 and Go. satisfy the following

[+Lo ; w.p. (1-5)

G1,0 = 1+G 1,0 ; w.p. 0.56 (B.1.5)

l+Go, ; w.p. 0.55

1+LI ; w.p. (1-c)
Go,, =  l+Go,j ; w.p. E (B. 1.6)

From (B. 1.4), (B. 1.5), and (B. 1.6) we find that

L 1 = - [+ a (1_ )2 +(l-+)+(B.1.7)
2(2-E)2(1-) (1-E)2 2(1-c)

Computation of L&. for k 2.

From the operation of the algorithm we obtain:

Gnkn=I + I [7] 2-" Gi~k ; n ,2, k~tn (B. 1. 8)
£ ____

where

GO.k + Lk (B.1.9)
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G +Lk(1-6) +0.55[ (B.+ Lt)

1-0.55

It can be shown by induction that G,Lk-, has the following form

G,k-_ =All ) GA 0 +A (2) Gk-l,o +A 3 ) ; 2<nk (B.1.)

;where A(n), i=1,2,3 are independent of k and can be computed recursively as follows:

A) 2+5 , A ) 4(1-4) , A) = 14-35--12E + 481
6-35 6-3 3(1-E) (2-5) (B.I.12)

A(l= [1-2-n']-1 2n l+ (2-8) +1: [7] A(1 , n - 3 (B.1.13)

rn(1S n-I [n~()

A (2) 1- -+- - + 2- A, A!n  >3  ( .. 5
-0.) (1-0.5) +)(=(B.1.14)

~~~~~Y -[1 2ME { +(-.5)+ + 6n!32'~ p (B. 1. 15)

For n=k, expression (B. 1. 11) gives:

A V)  AV3)

Lk =Gk0-_ Lk- + _ ,k>2 (B.1.16)

Expression (B.1.16) together with the recursions in (B.1.13)-(B.1.15) provide a mean for

the computation of Lk, k>2.

Development of an upper bound on Lt.

It can be seen by induction that:

A 2) <1+ 8
3 k>2 (B.1.17)

= 1 ; k_>2 (B. 1.18)

I1-A J'

AV) < (2-2E+5) k + (B.1.19)

(24) ( ) (1-()

From (B.1. 16)-(B. 1. 19) we find:
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3(2-2_,+8) 3(2-5)
Lk < Lk- + (1-e)(4-58) k+ (1-E)(4-58) , k2!2 (B.1.20)

from which we can show that

Lk - +5 k +  3(- 4)k+ Lj (- 5) =L =a-k2+p3k+y (B.1.21)

L _ 2(1-E)(4-58) 2(1-e)(4-58) =1  _ 1

Due to the upper bound on Lk, we conclude then that the following condition is sufficient

for stability:

30
3.Lkp(kIA)+ Y L~p(kIA)<A (B1.22)

k=0 k=31

where

p(kIA)=e
- %A 0A)k

k!

After some manipulations, we conclude that (B. 1.22) is equivalent to:

30 r;A2+ L 302
f 1 Lk p(k IA) + a(A)-- 2 k p(kIA) +

k=O k --O3:0 3i 0
+ X A- Y, k p(kIA +Y I1- YpkA)< (B. 1.23)

k-O k=0

Let us now define:

x A (B.1.24)

Then, from (B. 1.23)-(B. 1.24) we conclude that, for the stability of the algorithm, it is suf-

ficient that the input rate X satisfies the following inequality.

K. < sup x
< xsu (B. 1.25)
x>O fX

The following condition specifies a region of L values for which the algorithm is

unstable.

S> s gx) (B. 1.26)X>o g xW
30

where g(x)= , Lk e xk/k!
k-O
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The maximization of expessions in (B.1.25)-(B.1.26) has been done numerically, and
provides the throughput, as well as the optimal window size A*. In all the case4 the order

of the difference between the two suprema in (B.1.25)-(B.1.26) is less than 10- 3 . The

optimal window size is found as x (X*)1 where x* is the value that attains the suprema

in (B. 1.25).

Computation of Ly, for the Carietanakis's Dynamic Algorithm

Here, the quantitites Lk, k_>2 can be computed recursively as follows:

L 1=[1-22-k] -  l+2L0 2-k+2 'L4J 2
- k  

, k 2 (B.1.27)

where

L0 - 1 and L (B. 1.28)
(1-2E) (1-2E)(1--8)

Moreover the following upper bound on Lk,k t4, has been found.

L<[ 3(-) + 2(8-E)] k - 1 (B.1.29)- (1-2 -) (1-2 )(1- 8)I

Using the bounds in (B.1.29), we computed upper and lower bounds on the throughput

for the Capetanakis's dynamic algorithm. The computed upper and lower bounds were

identical to each other up to the fourth decimal point, and are included in Table HII.3.

B.2. Delay Analysis

The following definitions will be used in the sequel.

1: Length of a collision resolution interval (CRI).
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Window size.

E (X It) Expected value of the random variable X, given that the window size is

t.

p (x /t) The probability that the CRI has length x given that the window size is t.

9d :Number of slots needed to reach a CRP with lag I given that the current

lag is equal to d, de F.

Wd : Cumulative delay experienced by all the packets that were successfully

transmitted during gd slots.

N Number of packets transmitted in the CRI, that starts at time t.

z Cumulative delay of the N packets, after the CRP t.

W Cumulative delay of the N packets, until the instant t2.

Let us al o define,

Gd = E (gd) Wd = E (wd)

Note tha* by definition,

Q

W1 =E(X,D,)=W
n=1

Also, the mean session length G =E(Ti+l-Ti); i >1, equals to G 1. If G1 <00, then by

Wald's identity we have that,

Q =XG 1

Therefore, the determination of W1 and GI will permit the computation of the mean

packet delay.

The operation of the algorithm yields the following relations for the g',, d z F.

ld<A gd=l if I=I (B.2.i)
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1<_d<- A 9d = 1 + g 1 if I> I (B.2. Ia)

and that

A<d gd = + g d - A + 1 (B.2.2)

Taking expectations in (B I)-(B2) yields:

Gd=E(lId)+ I Gsp(s/d) if 1. d<_A, deF (B.2.3)
s~l.sE F

Gd=E(lIA)+ GdA-A+Sp(s/A) if d>A, deF (B.2.4)
sEF

Equations (B.2.3) and (B.2.4) comprise a denumerable system of linear equations. Of

interest to us is the element G I of a particular solution of this system. We now proceed

in the development of an initial upper bound on the solution of the system in (B.2.3)-

(B.2.4). Following the methodology in (20], such a bound will be the sequence

Go = yd+ , if yu, ,, can be determined so that the following inequalities are satis-

fied

Go.,,> E (lId) + Y G's,,p (s/1d) =G",, 1l5d<5A, ded.-FISEFS (B.2.5)
s l.sE F

G°,u >E(l IA)+ I G°_,+sp(sIA)=G ,u ifd>A, deF (B.2.6)
seF

Substituting Go in the right hand side of inequalities (B.2.5) and (B.2.6), it can be seen

that if de F,

G,= G,+ y,(E(1/d) - d - (l+X)e - 4) - (I+ ,d)e-  if l<d<A (B.2.7)

G'. -G°., + E(I/A)-y,, (A-E(I/A)) ifd>A (B.2.8)

From (B.2.8) we conclude that if E(1/A) < A, the condition for stability of the system,

inequalities (B.2.6) are satisfied if,

E (I A)
=A - E (1/A) (B.2.9)

With this value of yu, it can be seen that inequalities (B.2.5) are satisfied if
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,=max-y,, sup (O(d))} (B.2.10)
1:_d5A

where

O~)E (I/ d) + yjE (I Id) - d - (l+kd)e-Xd] 1..1

(1+d)e
- kd

Therefore,the solution to system (B.2.3)-(B.2.4) satisfies the inequalities

Gd < yd + Cu, deF (B.2.12)

The uniqueness of the solution is guaranteed by the same techniques as in [20]. If we use

a similar method for the development of a lower bound, we find that

ytd + Ct = Gd, dE F (B.2.13)

where

y = yu and C, = inf (e(d)) (B.2.14)

From the operation of the algorithm we also have that Wd ; dE F satisfy the follow-

ing system of linear equations,

W,=E(zId)+E(WId)+ 7 Wp(sld), I5d!_A, dcF (B.2.15)
sE F, I 1

W,=E(zlA)-E(VIA)+(d-A).A+_W. A+.p(sIA), A<d, dEF (B.2.16)
se F

Following the methodology in [201 we can show that

Wo.1 = gtd 2 + vid +!:I < Wd !5 d 2 + v,d + ,,=WO (B.2.17)

where,

I-u XAt (B.2.18)
2(A-E(I I A))

E(z IA) + E(xIA) - 2 + t,E[(A- 1)2 IA)v, =V1 = A-(I)(B.2.19)
A - E(I I A)

=S (O(d)), = inf (O(d)) (B.2.20)

where,
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E (z I d) + E (W Id) + g(E (1
21d) - d2 - (I + Xd)e - v u(d - E (I I d) - (1 + -d)e 9)

(I + Xd)e
-

Substituting W°.. in the right hand side of (B.2.15)-(B.2.16), we obtain Wd.. We

find,

W ,, = E(z 1 I) +E(VI 1) + pJE (1 2 1 
1)(l + X)e-') +v.(E(lI 11) -(I + ))e - )) + 4.,(1 - (I + X)e- ))

W~j= W1 . - - ) (1 - (1 + .)e- ) (B.2.23)

Also,

GI.,=E( 11)+y,(E( 1)-(I+ X)e-')+?,(I-(1+ X)e - ") (B.2.24)
G. 1 =G. - - -( + X)e- ) (B.2.25)

From the regenerative theorem [20], we have that

D = W__. < D! < = D" (B.2.26)
1 1

In this Appendix we also show that the conditional expectations of the form

E (X I d) can be computed with high accuracy. Let us define,

E (X I d,k) :The conditional expectation of the random variable X, given that the arrival

interval contains k packets, and has length d. Then,

*d (dk
E(X Id)= ,E(X Id,k) e (B.2.27)

k --o

The quantities E(X Id,k) depend only on k. In Section B.1 we show that the quantities

Lk = E (I I d,k) can be computed recursively:

L0=Li = I (B.2.28)

Lk=k- + I-AP) k >2 (B.2.29)

where A( ), i=1,2,3 can be computed recursively as follows:
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A1)=[l-2-nI- 1 2- n+ [4 , n_3 (B.2.31)i=2

n-I A 3

An)=[1-2-n 1+2-n(n+l)+2- I A n23 (B.2.32)
(i =2)

A~. =1/3, A = 2/3, A - 7/3 (B.2.33)

The quantities Zk E (z I d,k), can be also computed recursively:

Zo=O, Z 1 =1 (B.2.34)

Zk Zk- l + k >2 (B.2.35)

and the quantities A P, i = 4,5,6 can be computed recursively as follows:

) n 3 satisfies the recursion in (B.2.30)

An ; n -a 3 satisfies the recursion in (B.2.31)

A 1[1 -2-V]l +n2-"+n 2 2-"+2-"Y i A}6)} , n 3 (B.2.36)
i=2

A 3"' = 2' = 14 (B.2.37)
3' 3' 3

The quantities Yk = E(12 Id,k) can be computed as follows:

Y0 
= 0, Y1 = I (B.2.38)

Yk - Yk-L + ; k 2 (B.2.39)I -AV )  I1-AV7)

and the quantities A) , i = 7, 8, 9 can be computed recursively as follows:

A7) ; n _ 3 satisfies the recursion (B.2.30)

8) ; n _> 3 satisfies the recursion (B.2.31)

A =[1- 2-"-{-2L,-1+2-(1+2,)+ n2-"(I + L,-,)+ 2- ' A?) n > 3 (B.2.40)

.=
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1 A L ) = 3 A9) = 16 (B.2.41)

From the above formulas we see that a finite number, M, of terms from the infinite

series in (B.2.21), can be computed. Also, for large k values, and based on the recursive

expressions, simple upper and lower bounds on E(X Jd,k) can be developed. Those

bounds can be used to tightly bound the sum

E, E(X I d, k)e - x d k

k=M+1 k

Remark It can be also proved that E (yI d) = -d2

B.3 Interdeparture Distribution Analysis

We first give some definitions.

I/,..: Given k packets with counter values equal to 1 and m packets with

counter values equal to 2, the number of slots needed by the algorithm

until the end of the first successful transmission, after the k-multiplicity

collision has been observed.

nk, s: The number of length s interdeparture intervals within a CRI wich starts

with a k-multiplicity collision. If the length from the first slot of the CRI

until the first successful transmission is equal to s, then this interval is

included in the counting.

hd: Starting with a CRP at which the lag equals d, d_>l, and which follows a

successful transmission, the number of slots needed by the algorithm to

reach the first CRP at which the lag is one, and which follows a slot con-

taining a single transmicsion.
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mds: Starting with a CRP at which the lag equals d, d2l, and which follows a

successful transmission, the number of length s interdeparture intervals

until the first CRP at which the lag is one, and which follows a slot con-

taining a single transmission. If the length from the first slot of the CRI

until the first successful transmission is equal to s, then this interval is

included in the counting.

P(k,l,8 d): Given an arrival interval of length d, the probability that there are k

arrivals in it, that lk. 0=8, and that it takes I slots for its resolution.

Pk(1): Given a k-multiplicity collision, the probability that it takes

I slots for its resolution.

We also have:

H=Efhl} , C=X-I

C,
E{y 1 l,(s)}=E~m j.s}

n=1

Recursions

From the operation of the algorithm we have the following recursions:

(1)

lm =O;Vm , P(1Am0--)-O; V k>2, Vm

.m = l+m.o , P(l,' = 1) k0 2 ifm

lk'r =I+ li'M+,-i ; w-p l2-', k>2



* 102

1,if k=1 and s=:O
P(m A S) 1,,. 0 =s -1) , if k=O-, s 1

S(.m~k-i = s -1), if k2, s 1

{I , if S=1
n 0. 0, if S 1

nkIs , W.p. P(4, O#S-1)
k !2;nk~s= Iflk-ls W, . P(ikO=S-1)

NLsA E (nks) i=I
I+YP(1. 0 =O)=1l, if s=1

[1 if 1=1
k =0, I1; Pk M)= fjo , otherwise , P 2 (1) = P (12 ,0 =1-2), for L!3

k21 t-k-i

Therefore for X denoting the Poisson intensity,

AI X~
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Recursions 
for hd

The operation of the algorithm yields the following relationships:

1 , w.p. Mde

d<A;hd= 1+hI ,w.p. e-%d

l+ht , w.p. Ze -  ( P)k Pk(l), 1>2k=2 k!

d>A ; hd = l+hd- +t , w.p. e - XA (A)- Pk(l)k ---o kV

After taking expected values we obtain:

Hd = E(hd} e- + E(l I d) + e-HI+ E e Pk(I)Hj; d A

(()k
Hd = EIIA}+ I e-  - Pk(l)Hd-a+t ; d >A

k O 1>1 k!

where,

E{ (Id} = E Y (Xd)k Pk(l).l
k>o tI>_ k!

Recursions for m,4

The operation of the algorithm yields the following relationships, where [J denotes

integer part,:
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nw.p. e~X

n,+ in1 ,, w.p. e _x-( PS); k !2

d A: in, nk~1 ,,+mI, w.p. P(Old) n >O PM(OI 1)P(kjlpI ); k 2
n +p+2*s

I+ n-,+ in,; w.p. e~dl~ n -O e-P(o=p)PkI(-p-1);k !2
k! np2-

1 w.p. ),-(d+s-1) ; s 2

Ford > A:

Ms= ns+ MdA+f,s ; w.p.e -i T Pk(I) k 1l

k-l., + Mdl]+~ w.p. y e-A(+) (XA) ~kop Pt-1 \ (1-p 1 k~lf ILd-A

osR1k! (1=) -I'P- A-1
5,Rtd-A

A-1

+ nk,, + Md-(A-I>.t ; W-P-. e4 (+)( k P(Ik, s -n -1I) Pk.. (1-s +n) ,k2! ,

A-11

JAd-A II>

n-,,+ I, ; w.p. eld k~j [xd -i AA P(lo = p)Pk. 1 l-p-I): k 2

k! -A-

d-Aj 
_

n-1,+ mi?,s w.p.e n4d-~I n O e -- -k(k.o = P)Pk -1 (1-p- 1) k 2
n++ d-A *

= k + n, + I., ; wp.e e(d Pl +I} J'-T Io s -n -2-{4i
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=I w.p.Xe4'-l) if s-24 d-A _ 0

-I-T-:A-i

Let us define,

U(x)~{ A

k 
8k

P8 _1A Xe~- - P()

MdS, e -~dj P(A: + = M16) ~ ()+ _~P 1
k !

Fo d ~ e [N5 +A:

123 e-eJ

Md~s = N),, + Md-AlIs P X(1)
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+ eW N)~~-A. PXd+p-pA).s-I + F, MI,s PX(d+p-pA(1}

+-e-X(d +p) F),-P,- + M' X(

+ ~1-eXA )5~ I I XA

s-2
+ U(p-1)U(s-2)e- E1  el Pu,

m=S-1-Min(p. s-1)

U U(s -2)4eA(d+p) [(d+p-pA)eXPA + e]-

+ U(s-1-p) e-WN P;L(d+p-pA),s-p

+ (s-2p) e~( s2  Y,

Bounds 

M-

For the numbers Nk, we used the following bounds:

0O5Nks 5k-1 VS

For the numbers Hd, we can prove that,

cld + 015 Hd5 xd + 3d t1

where,

aI = (X" [A-E (I I A] I' EU (IiA]

'inf (d)maxt-u lSi§Q(d~

where:
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Q(d) kdX~e- {E(I I d) + xE(I Id) - d -;W

The following simple bound on Md.,s has been used:

0< Md., s <H =(x, d +3
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APPENDIX C

Here, we provide recursive formulas for the computation of p(,n). Clearly,

P(,) = 0; q<o, p(l) 1 ifq=l

p q 0 otherwise (C.l)

Let 12 be the number of slots needed for the resolution of multiplicity n>O conflict. Then,

from the operation of the algorithm we conclude that

p ~ ~ )W..-m( M 1
p(.)= -q-1 2 n 2"1

q- lImnl) 1 (C.2)
, q- W.P. r n - , = I)

The upper part of (C.2) is derived by considering the event that the packet under con-

sideration, together with n of the rest m- 1 packets retransmit immediately after the initial

collision. The lower part of (C.2) is derived by considering the event that the packet

under consideration does niot transmit immediately, while the n of the rest m-1 packets

retransmit immediately after the initial collision and it takes 1 number of slots to resolve a

collision of multiplicity n. The probabilities p (1,=/) can be computed by similar reason-

ing. Averaging in (C.2), we finally have the following recursive formulas for P,') for

m>2.

P') 2-m p_ m + 2-m q-2 (C-q[M In l  (C.3)

n=O n--O 1=I
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APPENDIX D

We introduce a simpler notation. Given {Xj} 1-<j, we define:

Xi (.i+X 3 )A, i=1,2

Y A (L3 A) 1 2 (D. 1)

A
I Li - i+ -3 , i=1,2

i=1,2, ; Pj(e,m): The probability that T ,)+e is the m-th colli-

sion resolution point after Tn), for the RAA in

cluster i. Note that m=l refers to the end of

the first CRI, which starts at T7s) .

i=1,2 P(i)(e,m): Th.e probability that T(s) I - Tns) = e, and there

are m CRIs for the algorithm in cluster i, in
[T s), T(s)

n n+ 1 ]

i=1,2 ; P(i)(m): The probab;lity that there are m CRIs for the

algorithm in cluster i, in [TnC, T(s) I

I": The length of a CRI, when it resolves all the

packets that have arrived during an interval of

length d. The number of arrivals per slot is

Poisson distributed with paramet-r X, and

-=x.

On<_k ;ln,k-n: The number of slots needed by either one of

the two RAAs in the system to transmit k

packets, when n of them have counter values
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equal to one, and the remaining k-n packets

have counter values equal to two.

O</_<e-l Pj(e,m ;/,n):

i=1.2 J The probability that: T ,)+e is the m-th colli-

sion resolution point after T ,s ) , for the RAA in

cluster i, T,,+1) -T)>e, and the last before

T()+e collision resolution point for the RAA

in the other cluster occurs at Tn)+ 1, and is the

n-th such point after Tn ) . Observe that

Tn ) + e cannot be a collision resolution point

for both RAAs since we then should have

Ts), = Ts) + e.

i,= 1,2 Pi.,(e,m ;e,n):

i= 1, if i=2 The probability that: T 1n+)" = Tn)+e, T'n,' is
2, ifi=l

the m-th collision resolution point after T s )

for the algorithm in cluster i, and it is the n-th

such point after Ts), for the algorithm in clus-

ter ic.

From the operation of the adopted RAA we conclude the following:

P( 1 1.k-I = m) = P(lk-lo = m-l)

P(lo.k=m) =P(. 0 =m-l)

P(1 1 0 = 1) =P(10 0 = 1) =P(10.1 = 2) =P(11 ,1 =2)= I

k l ; P(12.k-2=m) = 2- 2 P(lk, o=m -2)+P(I2_ 2=m-1)+2P(l k.bo) = m-2)



n2!3 KP(I,,k-,=M)=2 ' jP(k. om- 2 )+P(n.k-n=M -1 )+nP(41-.o=m -2)+
m 2k-l

Taking expectations with respect to the number of packets in the examined interval

we obtain, where Li denotes integer part,:

0--kSt m+ e- k (D.3)
2

Furthermore, it can be proved that the following recursive expressions are true:

=' m Pi~em) =(D.4)

For,

AI , ifi=2 (x 1, if x O(D5

' 2,if i=1 U~x 0, if x<0 D.'

we can also prove the following:

m!2} P1,1 (e~m ;e, I )-P(e,m)P(4,-,=e) (D.8)}:- Irin(e -I-Ie-n+1)
e -m ;P,(e,m :1,n) = Pj(e-k,m-I ;I,n)P(1I,=k)P(1., >e-1)P' (1,, >e-k-1) +

1->n k=1

k =e -1I
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m -I rnin(e -I-l,t +1-r)

n ;Pi,i i(e,me,n)= ., P, (e-k, m -1;1, n -1)P(l.,=k).

MJ hn+l k=l

.P(l.,=e-I)P- (14,. >e-k-) +
•~'( -> e (D.I-l10-)

. Pi,(e-kn-1;1,m-1)P(,,-k)P(k. =e-l)P-(l>e-k-l) (D.10)
l=M-I k=l

We therefore obtain:

P(')(e,m) = Pjji, (e,m ;e,n) ; i =1,2 (D. 1 1)

P(')(m) = P((e,m) ; i=1,2 (D.12)
t he q

The mean of the distribution in (D. 12) is the quantity E{N ((A1 )}, A ) } in (V.3).
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